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Abstract

Light is an electromagnetic wave that is described by Maxwells’s equations and can feature an
angular momentum. This angular momentum can be decomposed into a spin and orbital part,
which can be associated with the light’s polarization and spatial profile, respectively. In light
fields that feature a strong transversal gradient, spin and orbital angular momentum are coupled,
which is referred to as spin–orbit interaction of light. This causes a number of astonishing
phenomena, such as, the directional emission of light into nano-photonic waveguides.

In this thesis, I study the consequences of spin–orbit interaction on free-space scattering of
light. I show that it leads to the situation that light emitted by a nano-scale particle can seem to
originate from a position that is offset from the particle, if the emitted light field features orbital
angular momentum. This effect can be understood when considering that imaging the particle
can be interpreted as a measurement of the mean momentum of the light at the aperture of the
imaging system used to observe the particle. The presence of transverse momentum directly
relates to orbital angular momentum and gives rise to a tilt of the wave fronts. Thus, the light
seems to originate from a different position. The resulting apparent displacement is typically
on the order of the optical wavelength and depends on the polarization of the emitter and the
numerical aperture.

I experimentally investigate this effect in two different experimental setups. In the first
experiment a sub-wavelength diameter optical waveguide is used to mount and illuminate a
single gold nanoparticle. By imaging the particle, I observe an apparent displacement of the
particle that depends on the polarization state of the emitter. Since the waveguide only provides
the possibility to excite the particle with three different polarization states, a second experimental
setup was designed in which the nanoparticle and the waveguide were placed in a microscopic
gap between two half sphere lenses which subsequently was filled with index matching fluid.
This prevents any reflections from the waveguide and realizes the situation found in a typical
immersion microscope. I measured the apparent displacement of the particle as a function of the
ellipticity of the polarization of the illuminating light and observed a total displacement up to
the optical wavelength in good agreement with the theoretical models.

The polarization dependent position shift could potentially have a large influence on the ac-
curacy of position determination in super-resolution microscopy. For this reason, I theoretically
investigated how one can make use of the fact that the displacement of the emitter is accom-
panied by a deformation of the point spread function in order to simultaneously identify the
emitter’s position and polarization. The results show that it is in principal possible to account
for this effect, however, depending on the desired resolution, this requires a many orders of
magnitude better signal to noise ratio.
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Kurzfassung

Licht ist eine elektromagnetische Welle, die durch die Maxwell Gleichungen beschrieben wird,
und kann einen Drehimpuls besitzen. Dieser Drehimpuls setzt sich aus einem Spin- und Bahn-
drehimpuls zusammen, welche mit der Polarisation des Lichtes und seinem räumlichen Pro-
fil assoziiert werden. In Lichtfeldern mit starkem transversalen Gradienten sind der Spin- und
Bahndrehimpuls gekoppelt, was als Spin–Bahn Kopplung von Licht bezeichnet wird. Diese führt
zu diversen erstaunlichen Phänomenen, wie zum Beispiel zur direktionalen Emission von Licht
in nanophotonische Wellenleiter.

In dieser Arbeit untersuche ich die Konsequenzen der Spin–Bahn Kopplung beim Streuen
von Licht in den freien Raum. Die Arbeit zeigt, dass es beim optischen Abbilden von Nano-
teilchen zu Situationen kommen kann, in der das vom Nanoteilchen emittierte Licht, seinen
Ursprung nicht am Ort des Teilchens zu haben scheint. Dieser Effekt tritt ein wenn das emit-
tierte Lichtfeld am Ort der Apertur des Abbildungssystems einen Bahn-Drehimpuls besitzt, zum
Beispiel wenn das Nanoteilchen elliptisch polarisiert ist. Der scheinbare Versatz ist typischer
Weise in der Größenordnung der optischen Wellenlänge und ist abhängig von der Polarisation
des Emitters und der Numerische Apertur des Abbildungssystems.

Dieser Effekt wird in zwei verschiedenen experimentellen Aufbauten untersucht. Im ersten
Experiment wird ein Wellenleiter verwendet, der einen Durchmesser kleiner als die Wellenlän-
ge des geführten Lichtes hat, um ein einzelnes Gold Nanoteilchen zu halten und zu beleuchten.
Beim Abbilden des Partikels kann ein scheinbarer Versatz beobachtet werden, welcher vom
Polarisationszustand des Emitters abhängt. Da der Wellenleiter nur drei verschiedenen Pola-
risationszustände ermöglicht mit denen der Partikel angeregt werden kann wurde ein zweites
Experiment entworfen, in dem das Nanoteilchen und der Wellenleiter in dem mikroskopischen
Spalt zwischen zwei Halbkugellinsen positioniert werden, welcher dann mit Immersionsflüssig-
keit aufgefüllt wird. Dies verhindert Reflexionen an dem Wellenleiter und stellt ein typisches
Immersions-Mikroskopie Verfahren dar. Der scheinbare Versatz des Partikels wurde als Funk-
tion der Elliptizität der Polarisation des anregenden Lichtes vermessen und es konnte eine gute
Übereinstimmung mit den theoretischen Modellen beobachtet werden.

Die polarisationsabhängige Abweichung von der realen Position kann potentiell großen Ein-
fluss auf die Genauigkeit der Positionsbestimmung in super-auflösender Mikroskopie haben.
Daher habe ich untersucht ob mittels der Verformung der Punktspreizfunktion, welche mit ei-
nem scheinbaren Versatz einher geht, die Position und Polarisation eines Emitters identifiziert
werden kann. Die Ergebnisse zeigen, dass es zwar möglich ist diesen Effekt zu berücksichtigen,
dafür aber um einige Größenordnung besseres Signal zu Rauschen Verhältnis notwendig ist.
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CHAPTER 1
Introduction

Light as electromagnetic radiation is described by Maxwell’s equations which were first de-
scribed by James Clerk Maxwell in 1865 and established in their today known form in the end
of the 19th century. Maxwell’s equations describe electromagnetic transversal waves which os-
cillate in the plane perpendicular to the propagation direction. They are characterized by scalar
quantities like energy and vectorial quantities like linear and angular momentum, which all are
conserved quantities in non-interacting and freely propagating waves. The existence of linear
momentum of light gives rise to radiation pressure, which was already known to Maxwell him-
self [1]. Several years later the angular momentum of light was described [2]. It can e.g. be
observed by transferring it to small particles, which are then subject to an optically induced
torque [3]. The angular momentum carried by light can be decomposed into an internal, so
called spin angular momentum (SAM) and an orbital angular momentum (OAM), which are
determined by the polarization and the spatial degrees of freedom of the light [4]. The OAM can
be associated with twisted or helical wave fronts where the light field dynamical rotates around
the main beam axis, while SAM is associated with the dynamical rotation of the electromagnetic
field, which occurs for instance when light is circularly polarized, as first described by Poynt-
ing [5]. In a well collimated beam of light, which is described by the paraxial approximation, the
electromagnetic field oscillates orthogonal to the propagation direction and spin and the spatial
degrees of freedom in such beams are independent quantities.

In light fields that exhibit a strong field gradient in direction transverse to its propagation
direction, which e.g. occurs in the focal region of a beam that is strongly focused by a lens with
high numerical aperture (NA), longitudinal field components parallel to the propagation direc-
tion can appear in addition to the field components that oscillate transverse to the propagation
direction. The longitudinal field components are out of phase with the transverse components,
which causes the light field to be locally elliptically polarized [6–10] in a plane which con-
tains the propagation direction. The ellipticity of the local elliptical polarization is dependent
on the spatial extension of the beam. When one considers the situation under time reversal, the
propagation direction of the light, as well as the sense of rotation of the elliptical polarization
components of the light field are inverted. This illustrates an inherent dependence of the lo-
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1. INTRODUCTION

cal polarization on the propagation direction. The coupling of the SAM (spin properties) and
the OAM (spatial properties) is referred to as spin–orbit interaction (SOI) or spin–orbit cou-
pling [11]. In macroscopic optics the transversal field gradients are small in the used light fields
, therefore the SOI phenomena can typically be neglected, but it can become prominent in sys-
tems where the light field is confined on a microscopic scale and thus its components feature
a large gradient. Consequences of SOI can for instance be seen in evanescent fields [12, 13]
and nano-photonic wave-guides [14–17], where the light fields are usually confined on length
scales which are in the order of the optical wavelength. In recent years, a vast interest in SOI
has developed [11, 18–20] due to the increasing importance of research fields like nano-optics
and nano-photonic structures, biosensing and near-field microscopy and the spatial controlling
of atoms, molecules and nano-structures.

Remarkable phenomena appear in the context of SOI like the spin-Hall effect of light [21–
24] where e.g. depending on the SAM of light a wavelength-scale displacement of reflected
or refracted laser beams at a planar interface can be observed. This effect leads to specific
polarization dependent aberrations at optical interfaces. Using nano-scale structures it is possible
to investigate the SAM and OAM in strongly focussed beams [24–27]. Among these studies
were the first experimental demonstrations of freely propagating light beams which carry purely
transverse angular momentum, which results from an electric field which is spinning around an
axis which is orthogonal to the propagation direction of the beam. This polarization components
can play a key role in super-resolution microscopy and in light scattering behaviour of media
and nano-structures.

In nano-scale wave-guides SOI results in a coupling between the local polarizations and
the spatial properties like propagation direction and transversal gradient of the evanescent field.
This strong coupling has important consequences for many applications such as the trapping and
manipulation of atoms in the evanescent field close to the surface of sub-wavelength diameter
optical wave-guides [28–30]. Furthermore, SOI changes the physics of light-matter interaction
and gives rise to the new paradigm of chiral quantum optics [20]. This can be used to break the
mirror symmetry of the scattering process of light into dielectric [31–42] and plasmonic [43–45]
nano-photonic wave guides by nano-scale emitters like nanoparticles or atoms. It also enables
the realization of novel, spin-based non-reciprocal devices [46–48].

Until now, most experiments that studied the effect of SOI in light-matter interaction, inves-
tigated the situation when the emitters were coupled to the (evanescent) field of micro- or nano-
scale optical wave guides. There exist theoretical predictions of the influence of SOI on the free
space emission of small particles [49,50], which show that the field lines of the Poynting vector
of the electromagnetic field emitted by the particle leave the particle on spiral paths in the near
field, if the light emitted by the particle exhibits angular momentum. In the far field, these field
lines asymptotically approach straight lines which seem to not origin from the emitter. This
leads to the impression that the emitter is located at a position where it is not. This apparent shift
is in the order of the optical wavelength and is dependent on the SAM and OAM of the light
field emitted by the particle. First experimental observations on how the polarization of emitted
light can result in an apparent shift have been reported [51], analysing the light scattered from a
polystyrene sphere with a diameter of about 10 λ. In this thesis, we study the influence of SOI
on the scattering properties of point-like dipole emitters in a free-space, microscope imaging
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setting.
The possibility of the presence of an apparent shift of emitters in the order of the optical

wavelength potentially affects optical imaging techniques in which the position of emitters is
determined with an accuracy far exceeding the optical wavelength. The most prominent mem-
ber of such imaging techniques is super-resolution microscopy, which is a fast evolving field
that revolutionized traditional optical microscopy [52–57]. In 2014 it was honored with the
Nobel price in chemistry which was awarded to Eric Betzig, Stefan W. Hell and William E.
Moerner for the development of super-resolved fluorescence microscopy. Using different tech-
niques, these approaches enhance the precision of optical microscopy significantly beyond the
standard diffraction limit of λ/NA and routinely reach resolutions of a few nanometers [58–60].
Even resolutions in the sub-nanometer regime are reported [61]. While in some of these novel
methods the imaging process differs from the one in classical microscopy, like for instance
STED [62], other methods gain their outstanding precision from techniques using classical mi-
croscope imaging. This is for instance realized in PALM [63] and STORM [64], which make
use of the fact, that despite the standard diffraction limit, the position of point-like emitters can
in principle be measured with arbitrary precision [65, 66]. The basic idea of these approaches
is to prepare and control their samples in such a way that only a few, well-separated emitters
scatter light at a given time. Thus in a diffraction limited area only one emitter is emitting light
within the exposure time of a single image and it is possible to precisely determine the position
of all emitters in a set of images.

In this thesis I present in chapter 2 theoretical models which show that the presence of OAM
in the light field emitted by a small dipole emitter, can lead to a deviation of the propagation di-
rection of the light with respect to the radial direction when the light passes an aperture. Studying
this effect in the context of optical imaging, we find a shift of the emitters image that depends
on the overall angular momentum of the light emitted by the particle and the numerical aperture
of the imaging system. The apparent displacement of the emitter is typically on the order of the
wavelength but, under certain circumstances, can even reach arbitrary large values. In chapter
3 and 4 I present two experiments which were performed to observe and quantify the predicted
effect by imaging a 100 nm diameter gold nano-sphere, where we found excellent agreement of
the measured data with the theoretical models.

This polarization dependent position shift could potentially have a large influence on the
imaging process in super-resolution microscopy. In chapter 5 we investigate the consequence
of this effect on super-resolution microscopy. We discuss how well one can compensate for this
effect by analysing the polarization dependent point spread function and determine the noise
limited position accuracy in position determination and compare it to established models for
noise dependent accuracy.
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CHAPTER 2
Spin-orbit interaction in optical

imaging

In this chapter, the origin of the displacement of the centroid of the far field image of an ellipti-
cally polarized emitter will be discussed. In the beginning, we determine the linear momentum
density of a light field which is the fundamental property providing information about the local
propagation direction of light fields. It directly relates to the orbital angular momentum. Using
the momentum density we then study the wave fronts of the field emitted by a small dipole emit-
ter which will provide an illustrative graphical explanation of the centroid’s shift. A quantitative
determination of the shift of the centroid is going to be performed with two different approaches,
from which we derive the same analytic expression. First, we investigate the overall momentum
of the light passing an imaging system, which features a small transverse momentum leading to
a transverse displacement of the image while passing the imaging system. Second, we discuss
a Fourier optics approach to determine the far field image. Finally, we will apply alternative
position determination methods to the calculated images.

2.1 Fundamental properties of light fields

In this section we will determine the momentum density of a light field and then study its relation
to the Poynting vector. After that we will use both of this fundamental properties to define wave
fronts of light fields in a different approach than common definitions.

2.1.1 Momentum density of light fields

To derive the linear momentum density of a light field we use an operational approach in which
we first determine the momentum transfer from the light field onto a dipolar test particle. From
the momentum transfer it is then possible to conclude the momentum density of the exciting
light field. The test particle is assumed to be a dipole which is induced by the exciting light

5



2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

Figure 2.1: Electric dipole. An electric dipole consisting of the charge Q with mass m+ at
position r+ and the charge −Q with mass m− at position r− with respect to the origin O. The
binding force between the two charges is given by Fd which is parallel to the relative distance
between the two charges, given by rd. Such an dipole would for instance be realized by a
hydrogen atom.

field an to be resonant with the exciting light field.1 Following [67, 68] we model the dipole by
two charges Q with mass m+ and −Q with mass m− at the positions r+ and r− with a relative
separation of rd = r+−r−, as shown in Figure 2.1. The forces acting on the individual charges
in the external electromagnetic field are the sum of the Coulomb force, the Lorentz force and
the binding force Fd between the two charges, which is a function of their distance rd = ‖rd‖.2
The overall forces on the charges are given by

F+ = Q (E(r+, t) + ṙ+ ×B(r+, t)) + Fd (2.1)

F− = −Q (E(r−, t) + ṙ− ×B(r−, t))− Fd. (2.2)

The expression E(r, t) denotes the full real valued external electric field which is applied on
the particle. It is possible to write the electric field as a sum of complex valued fields,

E(r, t) =
1

2
(E(r, t) +E∗(r, t)) , (2.3)

where E∗ is the complex conjugate of E. In the same way the magnetic field B(r, t) can be
written as

B(r, t) =
1

2
(B(r, t) +B∗(r, t)) . (2.4)

In order to determine the overall force F = F+ + F− acting on the dipole we rewrite the
positions r± using the center of mass coordinateR and the relative coordinate rd, with

R =
m−
m
r+ +

m+

m
r−, (2.5)

where m = m+ +m− denotes the overall mass of the dipole. The positions of the two charges
can be expressed as3

r± = R± m∓
m
rd. (2.6)

1A short justification why we chose a dipole which is induced and resonant to the exciting field can be found in
the appendix A.1

2Here, ‖·‖ denotes the standard norm on a n-dimensional vector space.
3This decomposition is shown in the appendix A.2.1.
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2.1. Fundamental properties of light fields

The overall forces acting on the charges can then be written as4

F± = ±Q
(
E(R± m∓

m
rd) + (Ṙ± m∓

m
ṙd)×B(R± m∓

m
rd)
)
± Fd. (2.7)

We now do a classical dipole approximation assuming that the size rd of the dipole is much
smaller than the optical wavelength λ = 2πc/ω of the exciting light field, like it is e.g. the case
for atoms. Therefore we approximate the electric and magnetic field up to the first order of the
Taylor series of the fields. The Taylor series of a function f : R3 → R3 at the position r0 is
given by [69]

f(r0 + r) =

∞∑
n=0

1

n!

(
r · ~∇

)n
f(r0). (2.8)

The first order approximation of the electric and magnetic field is then given by5

E(R± m∓
m
rd) = E(R)± m∓

m

(
rd · ~∇

)
E(R) (2.9)

B(R± m∓
m
rd) = B(R)± m∓

m

(
rd · ~∇

)
B(R). (2.10)

Now using the electric dipole moment µ = Q · rd the overall force F acting on the dipole can
be written as

F = Q
[
E(R) +

m−
m

(
rd · ~∇

)
E(R) +

(
Ṙ+

m−
m
ṙd

)
×
(
B(R) +

m−
m

(
rd · ~∇

)
B(R)

)
− E(R) +

m+

m

(
rd · ~∇

)
E(R)−

(
Ṙ− m+

m
ṙd

)
×
(
B(R)− m+

m

(
rd · ~∇

)
B(R)

) ]

=
(
µ · ~∇

)
E(R) + µ̇×B(R)

+ Ṙ×
((
µ · ~∇

)
B(R)

)
+ µ̇×

((
µ · ~∇

)
B(R)

) m2
− +m2

+

Qm2
(2.11)

We now assume the exciting light field to be monochromatic, meaning that the complex
valued fields E andB can be written as

E(r, t) = E0(r) e−iωt and B(r, t) = B0(r) e−iωt. (2.12)

In order to derive the momentum density of the light field we consider the dipole to be induced
by the exciting light field and the dipole oscillation to be resonant with the exciting light field.
Consequently the dipole is only exposed to the radiation pressure [70] and not to a gradient

4In order to maintain readability in the following the time dependence of E , E, B and B will not be written
down explicitly.

5It is common to write the first order approximation of a vector valued function f as f(r0 + r) ≈
f(r0) + Jf (r0)r, where Jf (r0) is the Jacobi matrix evaluated at r0. The expression Jf (r0)r is identical with(
r · ~∇

)
f(r0), see appendix A.2.2
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2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

force [71, 72]. The gradient force acts in direction of the intensity gradient of the light field,
which is for instance used in optical tweezers. We describe the dipole as a Lorentz oscillator
which is resonant to the light field. The dipole moment µL of a Lorentz oscillator is in general
given by [68]

µL =
1

2
|α|
(
e−iϕE + eiϕE∗

)
with α = −Q

2

m̃

1

ω2 − ω2
0 − iγω

, (2.13)

ϕ = arg (α) and m̃ = (m+m−)/(m+ + m−) the reduced mass. On resonance, meaning
ω = ω0, the dipole moment of the Lorentz oscillator can be written as

µ̄L =
1

2
|α|
(
ei
π
2E + e−i

π
2E∗

)
=
i

2
Im(α) (E −E∗) . (2.14)

The third term in the force F , see expression 2.11, acting on the resonant Lorentz oscillator
is dependent on the velocity Ṙ of its center of mass. This term stems from the Lorentz force
and is proportional to the velocity of the center of mass of the Lorentz oscillator. To find the
momentum density of a light field we need to fix the probe dipole at a certain point in space,
meaning Ṙ = 0. Otherwise the velocity of a moving dipole would modify the intrinsic force
acting on the dipole at a certain position. The force F0 acting on this spatial fixed and resonant
Lorentz oscillator is given by

F0 =
(
µ̄L · ~∇

)
E(R) + ˙̄µL ×B(R) + ˙̄µL ×

((
µ̄L · ~∇

)
B(R)

) m2
− +m2

+

Qm2
. (2.15)

The next step to determine the momentum density of the light field is to derive the momen-
tum P which is transferred to the resonant dipole by the light field. Therefore we average over
the terms oscillating at the light frequency by integrating the force F0 over one oscillation period
2π/ω. While the first two terms in 2.15 are partly nonzero when averaged over one oscillation
period of the light field, the third term vanishes. The corresponding momentum P gained by the
dipole is then given by

P =

2π
ω∫

0

F0 dt

=
π

ω
Im(α) Im

((
E∗0 · ~∇

)
E0 +E∗0 ×

(
~∇×E0

))
. (2.16)

This derivation is performed in detail in A.2.3. Using the vector identity
(
E∗0 · ~∇

)
E0 +E∗0 ×(

~∇×E0

)
=
(
~∇⊗E0

)
E∗0 , which is proven in A.2.4, the momentum absorbed by the dipole

can finally be written as

P =
π

ω
Im(α) Im

(
(~∇⊗E0) E∗0

)
(2.17)

where ~∇ acts only on E0 and not on E∗0 . Now in order to determine the momentum density of
the light field, the amount of light absorbed by the dipole needs to be evaluated. This is done via
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2.1. Fundamental properties of light fields

the absorption cross section σAbs [73, 74] of the Lorentz oscillator. The absorption cross section
is given by the ratio of the frequency dependent absorbed power P of an Lorentz oscillator and
the intensity I of the exciting light field6, with

P =
ω

2
Im(α) |E0|2 and I =

1

2
cε0 |E0|2 . (2.18)

Here it is assumed, that the electric field can considered as a plane wave over the elongation of
the area in which the absorption process of the dipole takes place. This was with rd � λ a major
assumption of the past derivations. The absorption cross section is then given by

σAbs =
P
I

=
2π

ε0λ
Im(α), (2.19)

with ω = 2πc/λ. The momentum density ρP of the light field is then given by the ratio of the
momentum absorbed by the dipole and the volume which can be assigned to the energy absorbed
by the dipole. It is given by the absorption cross section times the wavelength, which in turn
corresponds to the time over which the momentum transfer was averaged. The momentum
density can then be written as

ρP =
P

λσ
=

ε0
2ω

Im
(

(~∇⊗E0) E∗0

)
. (2.20)

Since the momentum density determines the momentum absorbed by a dipolar test particle and
therefore the direction of the motion of the test particle it also defines the local propagation
direction of a light field.

With the linear momentum density the angular momentum density ρL can be defined as

ρL(r) = r × ρP (r). (2.21)

The angular momentum density is only dependent on the momentum transverse to the radial
direction.

2.1.2 Momentum density and the Poynting vector

In light propagation, an important characteristic is the Poynting vector [68], which represents
the energy flux of an electromagnetic field. The cycle-averaged Poynting vector S0 is given by

S0 =
1

2
Re (E∗0 ×H0) , (2.22)

where H0 is a complex valued time independent component of the magnetic field strength H.7

It is possible to decompose S0 into a part which is proportional to the momentum density ρP ,
the so called orbital part Sorb

0 and a part which is proportional to the curl of the spin angular
6Note that both, the absorbed power and the intensity are averaged over one oscillation period of the field. The

absolute square of E0 is given by |E0|2 = E0 ·E∗0
7The magnetic field strength can be written in the same way as the electric and magnetic fields as H =

(H0e
−iωt +H∗0 e

iωt)/2

9



2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

momentum density ρS of the light field, the so called spin part of the Poynting vector Sspin
0

[75, 76]. The spin angular momentum density, or just spin density ρS is given by

ρS =
ε0
2ω

Im(E∗0 ×E0). (2.23)

It is derived by averaging the overall torque applied by the Coulomb and Lorentz force on a
small dipolar test particle over one oscillation period of the exciting light field. This derivation
is shown in detail in appendix A.3.1.

The decomposition [75, 76]

S0 = Sorb
0 + Sspin

0 (2.24)

of the mean Poynting vector with

Sorb
0 =

ε0c
2

2ω
Im
(

(~∇⊗E0) E∗0

)
= c2 · ρP (2.25)

and

Sspin
0 =

ε0c
2

2ω
Im
(
~∇× (E∗ ×E)

)
=

1

2
c2 ·

(
~∇× ρS

)
(2.26)

is shown in detail in the appendix A.3.2. The consequence of this decomposition is that the
Poynting vector does in general not give the local propagation direction of a light field. Only in
the case of a vanishing spin density the local propagation direction of the field coincides with
the Poynting vector.

2.1.3 Wave fronts

A physical suitable definition for wave fronts of a light field can be made using the linear mo-
mentum density, which represents the local propagation direction of the light field. In particular
the wave front can be defined as a surface of which the tangential plane is in every point orthog-
onal to the local propagation direction of the field. Such a wave front can be determined using
the projection of the local time dependent orbital part of the Poynting vector A.27 onto the local
propagation direction given by the linear momentum density ρP . At every point in the light
field the projection of the time dependent orbital part of the Poynting vector onto the momentum
density is a scalar which can be written as

Sorb(r, t) · ρP (r) = A0(r) +A(r) sin(2ωt+ ϕ(r))2. (2.27)

This scalar is composed of a time independent part and a part which oscillates with twice the
frequency ω of the light field. We now define a wave front as a surface in which every point
exhibits the same phase ϕ(r) of the oscillating part.8

8There exist singular points where Sorb(r, t) is constant in time and consequently A(r) = 0 in 2.27. At this
points the definition of the wave fronts does not provide a clear defined wave front. Such points are for instance the
rotation axis of a rotating dipole.
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2.2. Spin–orbit interaction effects in the optical imaging process

Note that this definition of the wave fronts is different from the more common way to define
wave fronts as surfaces of constant phase of the emitted electric field [70]. This definition
applies to special cases like for instance plane- or spherical waves,where the wave fronts are
then orthogonal to the local propagation direction. But in general it is not possible to define a
phase of the local field, which is independent from the coordinate system describing the field.
This applies when the light field exhibits nonzero spin density.

2.2 Spin–orbit interaction effects in the optical imaging process

In this section we investigate the influence of the local linear momentum in a light field in the
optical imaging process. It is most relevant when imaging elliptically polarized dipole emitters,
which will be introduced first. We will then study the wave fronts of such emitters. From the
wave fronts we will already be able to tell, that in certain regions in the light field emitted by
an elliptically polarized emitter the local momentum leads to the impression that the light does
not originate from the emitter. This effect will then be studied in a more quantitative way, with
the outcome, that the center of mass of the intensity distribution of an image does in general
not coincide with the position of the emitter. In the end of the section we will derive analytic
expressions for the images of elliptically polarized emitters, giving us the opportunity to use
other position determination methods than the center of mass.

2.2.1 Elliptically polarized dipoles

In this section the term elliptically polarized dipole will be defined within the framework of this
thesis. The electric field emitted by an arbitrarily polarized optical dipole emitter located at the
origin, which oscillates with an angular frequency ω, is given by [77]:

Efull(r, t) =
ω3

4πε0c3

[
(n× µ)× n1

u
+ (3n (n · µ)− µ)

(
1

u3
− i

u2

)]
ei(kr−ωt), (2.28)

where µ denotes the complex valued dipole moment, which describes the polarization of the
dipole, r = ‖r‖, u = kr, k = λ/(2π) with the wavelength λ of the emitted light and n = r/r.9

In the far field (r � λ) the terms containing 1/u2 and 1/u3 can be neglected against the 1/u
term. The far field expression of the electric field can thus be written as

E(r, t) =
ω2

4πε0c2

1

r
ei(kr−ωt) (n× µ)× n. (2.29)

In order to describe the electric field emitted by an elliptically polarized dipole it is suitable
to decompose its field into a superposition of three fields with the elementary linear polarization
states µDx = ex, µDy = ey and µDz = ez .10 The field emitted by a dipole in polarization

9Note that this field is not the full real valued electric field emitted by a dipole but corresponds to the fields used
in the decomposition 2.3 of the real valued field. This applies to all other electric fields presented in this section.

10Note that the dipole moment is not a unitless quantity, but has the unit Coulomb times length. To be more
specific one could write the dipole moment as µDi = ‖µDi‖ · ei. Since the absolute value of the dipole moment
would only be a prefactor to the electric field, which is not important for the spatial field distribution we assume it
without loss of generality to be one.

11



2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

state µDi will be denoted as EDi , with i ∈ {x, y, z}. Without loss of generality we define an
elliptically polarized emitter via the dipole moment

µell =
1

Nε
(ex + i ε ey) with Nε =

√
1 + |ε|2, (2.30)

which means that the dipole emitter is rotating in the xy-plane.11 The field of an elliptically
polarized emitter is then given by

Eell =
1

Nε
(EDx + ε · i ·EDy) , (2.31)

where we denote the complex valued amplitude ratio ε as the dipole polarization ratio. The
field of any elliptically polarized dipole is fully described by ε. The case ε = 0 corresponds
to the field of a dipole which is linearly polarized along the x-axis, ε = ±1 corresponds to the
fields of counter clockwise and clockwise circularly polarized dipoles, also referred to as σ±

polarized and ε =∞ to the field of a dipole which is linearly polarized along the y-axis. Further
considerations of ε and the fields of elliptically polarized emitters described by ε can be found
in the appendix A.4

2.2.2 Momentum and wave fronts in the field of elliptically polarized dipoles

Using the linear momentum density we can determine the orbital angular momentum density
ρL in the light field of an elliptically polarized emitter, which we defined as

ρL(r) = r × ρP (r), (2.32)

while the emitter is placed at the origin at r = 0. The on the local intensity 2.18 normalized
angular momentum density ρ̄L and spin angular momentum density ρ̄S are given by

ρ̄L =
|ε| sin(θ)

(1 + ε2) cos(θ)2 + sin(θ)2(ε2 cos(φ)2 + sin(φ)2)
C (2.33)

and

ρ̄S =
2 |ε| |cos(θ)|

(1 + ε2) cos(θ)2 + sin(θ)2(ε2 cos(φ)2 + sin(φ)2)
C, (2.34)

where θ and φ are spherical coordinates and C a constant factor. For the case of a σ+ polarized
dipole the normalized orbital and spin angular momentum densities are plotted in Figure 2.2a.
One can see, that along the rotation axis of the dipole emitter the field exhibits only spin angular
momentum and no orbital angular momentum while the situation in the plane in which the dipole
rotates is reversed. There the light features only orbital angular momentum and no spin angular
momentum and is therefore linearly polarized. Similar results can be found in [78, 79]. This
effect is the so called spin–orbit interaction or spin–orbit coupling of light [11,18–20]. The ratio

11This is not a loss of generality since the coordinate system in which a rotating dipole is described can always
be chosen such that the xy-plane coincides with the plane in which the emitter rotates.
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2.2. Spin–orbit interaction effects in the optical imaging process

Figure 2.2: Momentum in the light field of an circularly polarized emitter. a, The on the
local intensity normalized orbital angular momentum density ρ̄L (blue) and spin angular mo-
mentum density ρ̄S (yellow) of the light field of a σ+ polarized dipole plotted as a function of the
polar angle θ. While along the z-axis (θ = 0, π) the light features only spin angular momentum
and no orbital angular momentum the situation in the equatorial plane (θ = π/2) is reversed.
There the light features only orbital angular momentum and no spin angular momentum and is
therefore linearly polarized. b, The local propagation direction given by the normalized linear
momentum density ρP is shown as vector plot for the field emitted by a σ+ polarized dipole.
For this plot the full field was used and not the far field approximation. The yellow curve is a
wave front according to the definition that it is in every point orthogonal to the local propagation
direction. For r � λ the local propagation direction coincides with the radial direction. At the
transition to the far field at about 0.4 λ the propagation direction is counter clockwise twisted.
This twist decreases for r > λ but does not vanish completely. The wave front was derived
numerically in an incremental process from a position r � λ towards the origin and forms a
circle at about 0.3 λ. This circle appears since the local propagation direction matches at this
radius perfectly the radial direction.

between orbital angular momentum and spin angular momentum is coupled to the position in
the light field.

We now study the wave fronts of elliptically polarized dipole emitters. As defined in sec-
tion 2.1.3 a wave front is a surface which is in every point orthogonal to the local propagation
direction. In Figure 2.2b a wave front in the xy-plane is plotted for the case of a σ+ polarized
emitter. It was numerically determined as the path which is orthogonal to the local propagation
direction, given by the normalized linear momentum density, which is shown as vector plot. For
the determination of the linear momentum density the full electric field of a dipole emitter was
used and not only the far field approximation. Therefore the transition from the near field to the
far field can be seen. In the near field the local propagation direction coincides with the radial
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2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

direction and is then counter clockwise twisted at the transition to the far field. In the far field
this twist is decreased but does not vanish. Consequently the wave front forms a spiral in the far
field.

In the following an analytic expression for the wave fronts in the light field of an elliptically
polarized emitter will be derived. Thereby we focus on polarization states with a real valued ε12

only and restrict the determination of the wave fronts to the xy-plane and the far field approxi-
mation. The wave front of the light field is given by a path of which the tangent is in every point
orthogonal to the local momentum density. This path can be derived using the feature, that the
light emitted by the elliptically polarized dipole is in the xy-plane solely linearly polarized. In
particular we make use of the fact, that in the xy-plane the electric field has two zero crossings
due to the linear polarization. This derivation is discussed more detailed in the appendix A.5.

The wave front of an elliptically polarized dipole is in the xy-plane given by the parametric
expression

Rell(φ, t, ε, φ0) = Rell(φ, t, ε, φ0)

(
− sgn(ε) cos(φ)

sin(φ)

)
(2.35)

with

Rell(φ, t, ε, φ0) =
λ

2π

(
sgn(ε)φ0 + sgn(ε)

2π

λ
ct+ arctan

(
1

ε
tan(φ)

)
+ sgn(ε)

nπ

2

)
(2.36)

where sgn(ε) gives the sign of ε and n ∈ N0. The parameter φ0 ∈ (0, 2π] defines the phasing
of the wave front within one oscillation period of the light field, where the cases φ0 = 0 and
φ0 = π correspond to zero amplitude and the cases φ0 = π/2 and φ0 = 3π/2 to the positive
respectively the negative amplitude maxima. To obtain a continuous curve from this expression
several cases of n and the domain of φ need to be considered and are dependent on t and φ0.
For t = 0 and φ0 = nφπ/2 with nφ ∈ {1, 2, 3} a set R0

ell(ε, nφ) of functions is given in the
appendix A.49, which describes continuous wave fronts which correspond to the positive and
negative maxima of the field amplitude and the two zero crossings.

For the case of a dipole emitter which is linearly polarized along the x- or y-axis, i.e. ε = 0
or ε =∞ the wave fronts for t = 0 are given by

R0
Dx(φ, φ0) =

λ

2π

(
φ0 +

(n+ 1)π

2

)(
− cos(φ)
sin(φ)

)
(2.37)

R0
Dy(φ, φ0) =

λ

2π

(
φ0 +

nπ

2

)(cos(φ)
sin(φ)

)
. (2.38)

In Figure 2.3a the wave fronts for the positive (red) and negative (blue) amplitude maxima of
the field of an dipole which is oscillating along the x-axis are plotted together with the norm of
the corresponding real valued emitted electric field. The wave fronts are given by a set of circles
around the position which are separated by half the the wavelength λ. In particular the upper

12This is not a loss of generality, since this only fixes the angle between the coordinate system and the major and
minor axis of the polarization ellipse to zero, see A.4. To generalize this case one just needs to rotate the coordinate
system.
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2.2. Spin–orbit interaction effects in the optical imaging process

Figure 2.3: Wave fronts. Every subfigure shows in the upper part the intensity distribution of
the radiation pattern of a dipole for different values of ε, which correspond to linearly, circularly
and elliptically polarized dipoles. In addition a contour line (gray, dotted) is plotted. In the
lower parts of the subfigures the norm of the real valued electric fields are plotted together with
wave fronts. The red wave fronts correspond to the positive maximum of the electric field and
the blue wave fronts to the negative maximum. a, The shape of the contour line in the intensity
plot is well known for the emission pattern of a linearly polarized dipole. The dotted lines in
the plot of the electric field indicates the part of the wave fronts that is imaged when using an
imaging system with NA = 0.3. Along the optical axis of such an imaging system one could
approximate the local wave fronts with plane waves perpendicular to the optical axis. b, In the
lower plot one would approximate the wave fronts within an aperture centered at the positive
y-axis with plane waves which are tilted with respect to the optical axis and therefore estimate
the position of the emitter to the right of its real position. The optical axis of a second imaging
system in the lower part of the image was aligned such that the local approximation to the wave
fronts is again orthogonal to the optical axis. The distance from this optical axis to the y-axis
gives the apparent displacement of the emitter. c, The intensity distribution of this elliptically
polarized dipole is very similar to the one of a linearly polarized emitter, as shown in subfigure
a, which is clearly indicated by the contour line. Along the y-axis in the lower plot the wave
fronts show a kink which tilts them stronger than in the case of the circularly polarized dipole.
An approximation with plane waves would lead to the guess, that the emitter is located far right
of its actual position.

15



2. SPIN-ORBIT INTERACTION IN OPTICAL IMAGING

half of a wave front circle corresponds to one field maxima, either positive or negative, while
the lower half of the circle corresponds to the other maxima. This behaviour alternates from one
wave front circle to the next. Note that there seems to exist a discontinuity of the wave fronts on
the x-axis, but since the field is always zero along the x-axis, there are no wave fronts defined
along the x-axis.

For the case of a σ± (ε = ±1) polarized dipole the wave fronts for t = 0 are Archimedean
spirals given by

R0
σ+(φ, φ0) = +

λ

2π

(
φ0 + φ+

nπ

2

)(− cos(φ)
sin(φ)

)
(2.39)

R0
σ−(φ, φ0) = − λ

2π

(
φ0 + φ+

nπ

2

)(cos(φ)
sin(φ)

)
. (2.40)

Figure 2.3b shows wave fronts of a σ+ polarized dipole. While the wave fronts of the linearly
polarized emitter seem to be orthogonal to the y-axis at their intersections with the y-axis the
wave fronts of the circularly polarized emitter are clearly tilted and not orthogonal to the y-axis
at the corresponding intersections. This means that light at this positions is not propagating
in radial direction, since the normal to the wave fronts corresponds to the local propagation
direction of the light.

In Figure 2.3c wave fronts in the field of an elliptically polarized emitter with ε = 5 are
shown. There the tilt of the wave fronts at the intersections with the y-axis is increased with
respect to the circular polarized dipole, due to a strong kink of the wave fronts close to the y-
axis. This means that the local propagation direction of the light is even more tilted with respect
to the radial direction.

2.2.3 Displacement due to transverse linear momentum

From the wave fronts of an elliptically polarized dipole one can estimate, that the local propa-
gation direction of the light might lead to errors in position determination, like it was already
pointed out in Figure 2.3. We now investigate the consequences of the presence of a transverse
momentum in the simplest imaging process, which uses only an aperture and a screen to image
an elliptically polarized dipole emitter. This imaging system is shown in Figure 2.4 and assumed
to be aligned along the y-axis, where the aperture is placed at a distance d1 from the emitter and
the screen is placed at a distance d2 from the aperture. The linear momentum p̄ of the light
emitted by the dipole averaged over the aperture is composed by the longitudinal momentum p̄y
and the two transverse linear momenta p̄x and p̄z . This transverse momenta cause the tilt of the
local propagation direction of the light, with respect to the optical axis of the imaging system.
Along the way to the screen the light which passed the aperture increase its distance to the op-
tical axis due to the tilt of the mean propagation direction after the aperture. This results in a
displacement of the center of mass of the image on the screen. Consequently one would estimate
the light to originate from a position which is offset to the emitters position. Charles G. Darwin,
grandson of the famous naturalist Charles Darwin, predicted this effect already more than 80
years ago [80]. Similar findings were made by Xin Li and Henk F. Arnoldus [49, 50, 81, 82].
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2.2. Spin–orbit interaction effects in the optical imaging process

Figure 2.4: Transverse linear momentum. An aperture is placed at a distance d1 from an emit-
ter and the light passing the aperture is imaged on a screen at a distance d2 from the aperture.
The linear transverse momentum at the position of the aperture leads to a tilt of the mean pro-
pagation direction of the light. Along the way to the screen the light which passed the aperture
increase its distance to the optical axis due to the tilt of the mean propagation direction after the
aperture. This results in a displacement of the center of mass of the image on the screen.

To find the mean momentum p̄ of the light passing the aperture the momentum density ρP
introduced in 2.1.1 needs to be integrated over the volume inside the aperture:

p̄ =

∫
A

d1+dy∫
d1

ρµ dy dA, (2.41)

where A denotes the area of the aperture and dy is much smaller than the radial elongation of
the aperture. The position (q̄x, q̄z) of the center of mass in the image at the screen can then be
derived from the relations

‖p̄x‖
‖p̄y‖

=
q̄x
d2

and
‖p̄z‖
‖p̄y‖

=
q̄z
d2
. (2.42)

This equations clearly show, that the image of the emitter is only shifted when the light field at
the aperture exhibits a mean transverse momentum, i.e. an orbital angular momentum. This con-
ditions are only fulfilled for dipole emitters which are elliptically polarized, which can already
be seen in the wave fronts.

In the case of a vanishing aperture the linear momentum of the light passing the aperture can
be approximated with the linear momentum in the center of the aperture,

ρP (d1ey) =
1

d2
1(1 + |ε|2)

−
Re(ε)
d1

2π
λ
0

 . (2.43)
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The displacement of the center of mass of the image at the screen can then be evaluated to

q̄x = −M λ

2π
Re(ε) and q̄z = 0 (2.44)

with the magnification M = d2/d1. The apparent displacement ∆x in the object plane is then
given by13,14

∆x =
λ

2π
Re(ε). (2.45)

The apparent displacement increases linearly with the real part of ε and can become arbitrary
large. Although this is an interesting finding, this case is not relevant for common imaging
and microscopy methods. The introduced setup to image with only an aperture with vanishing
diameter and a screen is for instance realized by a pinhole camera. In general this is not an
imaging method that would be used to image sub-wavelength emitters. Therefore we study
in the next section the apparent displacement in an imaging system which is more related to
common microscopy and optical imaging setups.

2.2.3.1 Transverse momentum and displacement in optical imaging systems

Figure 2.5: Imaging system. An emitter is in the object plane at a distance f from a lens with
focal length f and aperture diameter D. At a distance f ′ from the first lens a second lens is
placed with focal length f ′, which forms an image of the emitter in the image plane at a distance
f ′. This image is magnified by the factor M = f ′/f .

In order to model a more complex microscopy setup we use two lenses and place the first
lens with focal length f and aperture diameter D at the distance f from the emitter, which his
located in the origin. The second lens with focal length f ′ is placed at the distance f ′ from the
first lens and the emitter is imaged on a screen at a distance f + 2f ′ from the origin, see Figure
2.5. The magnification of this imaging system is given by M = f ′/f and the optical axis is the
y-axis of the coordinate system. While the first lens applies a phase transformation to the light
which passes the aperture, in a way that spherical waves originating from a single point in the

13Note that the switch of the sign between the real displacement of the center of mass of the image at the screen
and the apparent displacement in the object plane is caused by a flip of the image in the particular imaging process.

14For a circularly polarized dipole the displacement can be geometrically determined from the spiral wave fronts,
see appendix A.6
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2.2. Spin–orbit interaction effects in the optical imaging process

focal plane are converted into plane waves after the lens, the second lens focuses the light onto
the screen. Thereby the average wave vector and thus the average linear transverse momentum is
conserved [70,83]. We assume the dipole emitter to be elliptically polarized as defined in section
2.2.1. The situation with which we will deal in this subsection is sketched out for a σ+ polarized
dipole in Figure 2.6. The spiral wave fronts, derived in section 2.2.2, which are emitted by the
dipole can be approximated by spherical wave fronts at the position of the lens. However, the
origin of this spherical waves lies in the object plane but not on the optical axis, as shown in
Figure 2.6. Consequently they are transferred to plane waves by the first lens, while the tilt of
the average momentum p̄ at the position of the aperture is conserved, meaning the plane waves
do not propagate along the optical axis of the imaging system. The second lens focusses this
plane waves onto the focal plane. Due to the tilt of the plane waves they are not focused onto
the optical axis [70, 83], instead the image is formed at a position offset to the optical axis.

Figure 2.6: Imaging a circularly polarized dipole. A σ+ polarized dipole at the origin of the
coordinate system emits a spiral wave front. At a distance f these spiral wave fronts are trans-
formed to plane waves by a lens with the focal length f . Due to an linear transverse momentum
of the light at the position of the aperture, these plane waves are tilted with respect to the optical
axis by the angle α, which also applies for the local momentum p̄ averaged over the aperture. At
a distance f ′ from the first lens the plane waves are focused by a second lens with focal length
f ′ onto a screen in a distance f ′. Due to the tilt of the plane wave fronts they are focused on
a point offset to the optical axis. The image of the circularly polarized emitter is displaced in
the image plane by q̄x, which leads to the assumption that the emitter is displaced in the object
plane.

2.2.3.2 Mean linear momentum in imaging system

In order to determine the mean value p̄ of the linear momentum of the light that passed a lens and
was emitted by an elliptically polarized dipole emitter we use the decomposition of the electric
field into the two fields emitted by dipoles with the two orthogonal polarization states Dx and
Dy as introduced in 2.2.1. The fields emitted by the linearly polarized dipoles are after the lens
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given by

Elens
Dx (ρ, φ) =

1

f
ex e

iky CE (2.46)

Elens
Dy (ρ, φ) = − ρ

f2
eρ e

iky CE . (2.47)

with eρ = cos(φ)ex+sin(φ)ez and CE is constant in r, but includes the time dependence of the
fields. Here (ρ, φ) are polar coordinates within the plane orthogonal to the imaging axis, with
x = ρ cos(φ) and z = ρ sin(φ). The complete derivations of the fields after the lens are shown
in appendix A.7.

The electric field of an elliptically polarized emitter is after the lens given by the super-
position Elens

ell = (Elens
Dx + iεElens

Dy )/Nε. Using expression 2.41 we can determine the mean
momentum of the light which passed the lens. In the approximation D � f we can identify
D/(2f) with the numerical aperture NA of the imaging system. Note that this aperture is the
geometrical aperture and thus does not depend on the refractive index. The mean momentum is
then given by

p̄ =

f+dy∫
f

2π∫
0

D/2∫
0

ε0
2ω

Im
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~∇⊗Elens

ell

) (
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ρ dρ dφ dy =

=
e0 |CE |2
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NA2 dy

(1 + |ε|2)


− 1
f πRe(ε)dy

kπ(1 + |ε|2 NA2

2 )dy

0

 (2.48)

This determination is performed in detail in appendix A.8. A dipole emitter which is linearly
polarized along the x-, y- or z-axis, i.e. ε = 0 does not feature any linear transverse momentum,
see A.8.

2.2.3.3 Displacement of the center of mass of an image

Now with the mean momentum of the light which was emitted by an elliptically polarized emitter
and which passed the first lens of the imaging system, it is possible to determine the displacement
of the center of mass with respect to the optical axis in the image using expressions 2.42. Since
the second lens of the imaging system transforms the plane waves which do not propagate along
the optical axis again into spherical waves which form an image on the screen offset of the
optical axis the center of mass displacement does not change beyond the second lens. Therefore,
the length d2 in the expressions 2.42 needs to be replaced with f ′, resulting in

q̄x = −M λ

2π

Re(ε)

1 + |ε|2 NA2

2

(2.49)

and

q̄z = 0, (2.50)
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with k = 2π/λ. Since q̄z = 0 there is no displacement in z-direction.
As pointed out in appendix A.4 the field of an arbitrarily elliptically polarized dipole can

always be decomposed into the fields of an optical-axis-oriented elliptically polarized dipole15,
characterized by Re(ε) plus a residual field of a linearly polarized dipole, characterized by Im(ε).
The shift of the center of mass in the image is solely caused by the optical-axis-oriented ellipti-
cally polarized dipole, while the residual linearly polarized dipole decreases the displacement.

The shift of the center of mass of the image in on the screen consequently leads to an apparent
shift of the emitter in the object plane given by

∆x =
λ

2π

Re(ε)

1 + |ε|2 NA2

2

. (2.51)

Here, the switching of the sign is caused by the fact that the imaging process provides an image
of the scenery in the object plane which is inverted. In Figure 2.9 the apparent displacement in
the object plane ∆x is plotted for real valued ε. The shift appears along an axis parallel to the
projection of the average momentum p̄ of the light field into the image plane. The case ε = 0
respectively ε = ∞ results in the displacement being zero, as one would expect when imaging
purely linearly polarized dipoles. In the following we focus on real valued ε, which gives the
largest shifts. Assuming that the numerical aperture and |ε| are small, ε2NA2 � 1, and the
center of mass shift can be approximated by

∆x ≈ ε λ
2π
, (2.52)

Consequently, for small ε, the center of mass of the far field image, i.e. the apparent shift of the
emitter in the object plane, increases linearly in ε. The same apparent displacement as function
of ε was obtained by determining the local tilt of the wave fronts along the optical axis, which
corresponds to an imaging setup with vanishing aperture. For ε = ±1, which corresponds to
a σ± polarized dipole, the apparent shift of the emitter in the object plane is then given by
∆x ≈ ±λ/(2π). For ε = ±

√
2/NA the maximum displacement is reached, given by

∆xmax = ± λ

2π

1√
2 NA

, (2.53)

meaning that for vanishing NA the shift of the center of mass can get arbitrary large, which is
quite an extraordinary result. For NA = 0.225 and ε = 6.3 the distance between the positive
and negative maximum displacement equals λ and for NA = 0.11 and ε = 12.6 the distance
between the emitter’s real and apparent position equals λ. In this regime the polarization of the
emitter is almost linear along the optical axis.

While the displacement of the center of mass of the image of an elliptically polarized dipole
was determined with classical physics the same derivation can be performed in a quantum me-
chanically approach using the wave function of the photons emitted by the dipole. In an op-
erational approach one can identify the local transversal linear momentum of the light at an

15As defined in appendix A.4 the major or minor axis of the polarization ellipse of an optical-axis-oriented el-
liptically polarized dipole coincide with the optical axis of the imaging system, which is used to image the dipole
emitter.
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aperture by determining the weak value [84–86] of the orbital angular momentum of the photon
wave function. With the local transverse linear momentum it it then possible to determine the
displacement of the centre of mass of the image, in the same way it was performed in this section.
Moreover, it is in principal possible to derive the momentum density using this approach. The
quantum mechanically determination of the apparent displacement is presented in the appendix
A.9 and leads to the same results as they are obtained in this section.

2.2.4 Fourier optics

In the previous section we derived the center of mass shift of a far field image of an elliptically
polarized emitter via the mean value of the linear momentum of the emitted light averaged
over the aperture of the used imaging system. Unfortunately this derivation only investigates
mean quantities of the wave functions and does not yield information on the spatial intensity
distribution of the image. As this is of vital importance for many applications and position
determination methods we will provide an approach based on Fourier optics that allows us to
derive an analytical expression for this intensity distributions.

For an imaging system consisting of two lenses we already determined the electric field of
an emitter after collimating the field with a lens in the small NA approximation. We now want
to investigate the evolution of this field for a typical imaging configuration, where a second
lens focuses the collimated field to form a real image of the emitter. This can be done within
the framework of Fourier optics. The fundament of Fourier optics is the conclusion that the
Fraunhofer diffraction, which describes the diffracted field at a long distance from the diffracting
object [83], is given by the Fourier transform of the diffracting object. The assumption that the
diffracting object is much smaller than the distance at which we determine the diffracted field,
which is made in the Fraunhofer diffraction, matches the assumptions we made in our imaging
system, where the diameter of the aperture of the lenses is much smaller than their focal length.

In order to determine the evolution of the field emitted by an elliptically polarized dipole
emitter it is convenient to decompose it into two orthogonal linearly polarized components.
For the setup we make the same assumptions as in the previous section 2.2.3. The elliptically
polarized emitter rotating in the xy-plane is located at the origin and imaged along the y-axis.
The diameter of the aperture D is considered to be much smaller than the focal lengths f and
f ′ of the first and second lens in the imaging system. The lenses are placed at a distance f and
f+f ′ from the emitter, see Figure 2.5. As outlined in appendix A.7, after the first lens, we obtain
the field distributionsElens

Dx andElens
Dx (see expressions 2.46 and 2.47). WhileElens

Dx gives the field
of a dipole which is linearly polarized orthogonal to the imaging axis, Elens

Dy gives the field of
a dipole linearly polarized along the optical axis of our considered imaging system. According
to Fourier-optics [83] the complex valued electric field in the image plane Eip is given by the
Fourier transform of the field in the plane of the lens:

Eip(ρ, φ) =

2π∫
0

D/2∫
0

Elens(ρ′, φ′, f ′)e
−i k

f ′ ρ ρ
′ cos(φ−φ′)

ρ′ dφ′ dρ′. (2.54)
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The intensity distribution in the image plane averaged over one oscillation period of the field is
given by

I =
1

2
cε0

∣∣∣Eip
0

∣∣∣2 . (2.55)

In order to evaluate the fields Elens
Dx and Elens

Dy at the position of the second lens their phase eiky

needs to be evaluated at the position f ′ of the second lens. The fields of the linearly polarized
dipoles in the image plane are given by

E
ip
Dx(ρ, φ) =

2π∫
0

D/2∫
0

Elens
Dx (ρ′, φ′, f ′)e

−i k
f ′ ρ ρ

′ cos(φ−φ′)
ρ′ dφ′ dρ′ (2.56)

E
ip
Dy(ρ, φ) =

2π∫
0

D/2∫
0

Elens
Dy (ρ′, φ′, f ′)e

−i k
f ′ ρ ρ

′ cos(φ−φ′)
ρ′ cos

(
φ− φ′

)
dφ′ dρ′. (2.57)

The factor cos (φ− φ′) stems from the vector nature of the light fields and describes the polar-
ization overlap eρeρ′ = cos (φ− φ′). Solving these integrals, the fields in the image plane are
then given by

E
ip
Dx(ρ, φ) =

J1

(
Dk
2f ′ ρ

)
ρ

ex
Df ′π

fk
eikf

′
CE (2.58)

E
ip
Dy(ρ, φ) =

J2

(
Dk
2f ′ ρ

)
ρ

eρ
Df ′π

fk
eikf

′ · iD
2f

CE , (2.59)

where J1 and J2 denote the first and second order Bessel functions of first kind. With the
magnification M = f ′/f , the numerical aperture NA = D/(2f) given in the approximation
D � f , and k = 2π/λ, the two fields can be written as

E
ip
Dx(ρ, φ) =

J1

(
2π
λ

NA
M ρ
)

ρ
ex CE (2.60)

E
ip
Dy(ρ, φ) =

J2

(
2π
λ

NA
M ρ
)

ρ
eρ · i NA CE . (2.61)

Note that the NA in these fields, as it was already stated in section 2.2.3.2, corresponds to the
geometrical NA and thus does not depend on the refractive index. The constant factors that
appear in both dipole fields are absorbed into the constant CE , which will not be pointed out
explicitly by a different notation in the following.

The field of an arbitrarily elliptically polarized dipole rotating in the x-y-plane can be de-
composed into fields of two orthogonal linearly polarized dipoles as it was presented earlier, see
expression 2.31. Following this decomposition we obtain for the field in the image plane

E
ip
ell(ρ, φ) =

1

Nε

(
E

ip
Dx + i · ε Eip

Dy

)
, (2.62)
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Figure 2.7: Electric field in the image plane. a, The x-component of the electric field in
the image plane emitted by an elliptically polarized dipole (green) with ε = 2 plotted along
the x-axis. The assumed imaging system has an aperture of NA = 0.3. Along the x-axis the
other field components are zero. Additionally the decomposition of the field of the elliptically
polarized dipole in the two fields of linearly polarized dipoles oscillating along the x- and y- axis
are plotted (blue and yellow). One can see that while the field of the dipole which is linearly
polarized along the x-axis is symmetric with respect to x = 0, the field of the dipole which
is linearly polarized along the y-axis is antisymmetric with respect to x = 0. This leads to
constructive interference on one, and destructive interference on the other side, which in turn
leads to a shift of the global maximum of the electric field, i.e. the intensity. Consequently the
centroid of the image is displaced. b, The overall power of a dipole emitter radiated onto the
image plane (blue) and the maximum intensity (yellow) plotted as a function of ε, The considered
imaging system has an aperture of NA = 0.3. For increasing |ε| both quantities decrease due
to the decreasing relative amplitude of the dipole which is linearly polarized along the x-axis,
which composes together with the dipole which is linearly polarized along the y-axis the field
of the elliptically polarized dipole. For ε = 0 the fraction of the power emitted by the emitter
across the aperture is maximal. For |ε| =∞ the fraction of the power emitted across the aperture
is minimal but still nonzero as long the aperture diameter is nonzero. For circularly polarized
emitters (ε = ±1, indicated by the dashed lines) the overall power and the maximum intensity
already drop to half of their maximal values.

with the normalization factor Nε as defined in 2.31.

Using the decomposition 2.62 of the field which was emitted by an elliptically polarized
dipole with real valued ε in the image plane and in the object plane, one notices that the two
composing linear dipole fields are out of phase by π/2 at the lens, while they are in phase after
a second lens in the image plane. This means that the two composing fields do not interfere at
the lens, but feature constructive and destructive interference in the image plane. The field Eip

ell
and the composing componentsEip

Dx andEip
Dy are plotted along the x-axis of the image plane in

Figure 2.7a, for the exemplary parameters ε = 2 and NA = 0.3. Along the x-axis of the image
plane, the polarization vectors of both fields are parallel to the x-axis. While Eip

Dx is symmetric
with respect to the x = 0, Eip

Dy is antisymmetric, leading to constructive interference on one
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2.2. Spin–orbit interaction effects in the optical imaging process

Figure 2.8: Images of elliptically polarized dipoles. Calculated images of an elliptically po-
larized dipole are shown for different values of ε and the two apertures NA = 0.6 and NA = 0.3.
The increasing apparent displacement of the emitter can be seen, as well as the evolution of the
shape of the images. This figure nicely illustrates why there is a maximum displacement which
can not be exceeded. As the displacement stems from the interference of the spot like image at
ε = 0 with the ring structure at ε =∞ the apparent displacement can never exceed the radius of
the ring.

side of the optical axis and destructive interference on the other side. This interference leads to a
shift of the peak as well as of the center of mass of the intensity distribution of the image, giving
rise to an apparent shift of the emitter’s position.

The overall power emitted by the dipole stays the same when changing ε, but the power
collected with the imaging system decreases with increasing ε. For ε� 1 most of the collected
light comes from E

ip
Dx , which features a maximum of emission along the imaging axis, see

Figure 2.3a and b. In contrast, for ε � 1, most of the collected light comes from E
ip
Dy , which

exhibits a minimum of emission along the imaging axis. The resulting decrease of the overall
power collected by the imaging system and the maximum of intensity in the taken images with
increasing ε is plotted in Figure 2.7b.

Figure 2.8 shows a set of images calculated for different values of ε for the two numerical
apertures 0.3 and 0.6. There the increasing apparent displacement of the emitter can be seen,
as well as the evolution of the shape of the images. For small ε the image is a circular spot.
Intermediate values of ε lead to some kidney shaped structure. Finally when one images a
dipole which is linearly polarized along the optical axis, i.e. ε = ∞ the image is given by ring
structure. This figure nicely illustrates why there is a maximum displacement which can not be
exceeded. As the displacement stems from the interference of the spot like image (E

ip
Dx) with

the ring structure (E
ip
Dy) the apparent displacement can never exceed the radius of the ring.
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2.2.4.1 Apparent displacement

We now investigate how the change of the point spread function with respect to ε affects different
position determination methods. First we compare the center of mass obtained from the image
with the results from section 2.2.3.3. Then the effects of the image distortions caused by an
elliptically polarized dipole on other position determination methods will be briefly discussed.

The center of mass of an image is given by

q̄j =

∫
qj I(qj) dA∫
I(q) dA

, (2.63)

for j ∈ {x, z}. The integral is taken over the whole image plane. In general for an elliptically
polarized dipole the intensity of the elliptical field in the image plane is given by

Iell(ρ, φ) =
cε0 |CE |2

2(1 + |ε|2)ρ2

(
J1(ρ̃)2 + |ε|2 NA2J2(ρ̃)2

−2 Re(ε)NA cos(φ)J1(ρ̃)J2(ρ̃)

)
(2.64)

with ρ̃ = ρ · 2πNA/(λM). Now when determining q̄x, the integrals in equation 2.63 consist of
the three terms in equation 2.64 multiplied by qx. As J2

n is a rotationally symmetric function,
the first two parts of 2.64 describe images which are rotationally symmetric with respect to the
origin. Consequently their center of mass lies at the origin and they do not contribute to any
nonzero q̄x. The only remaining nonzero part is therefore given by16
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. (2.65)

Solving this integral leads to a center of mass along the x-axis of

q̄x = −M λ

2π

Re(ε)

1 + |ε|2 NA2

2

. (2.66)

In the integral to evaluate q̄z the cos(φ)2 is exchanged by cos(φ) sin(φ). Therefore the center of
mass along the z-axis is zero. Consequently, the apparent displacement in the object plane for
the center of mass estimate is given by

∆x =
λ

2π

Re(ε)

1 + |ε|2 NA2

2

, (2.67)

which is the same result as the one obtained in 2.51.

16With ρx = ρ cos(φ) and dA = ρ dρ dφ
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Figure 2.9: Position determination. The apparent displacement ∆x plotted as a function of
ε. An imaging system with an aperture of NA = 0.3 was assumed to calculate the images in
which the apparent position was measured. The used position determination methods are the
centre of mass estimate (blue), a fit of the theoretical point spread function (Bessel function) of
an emitter with ε = 0 (yellow), a fit of a circularly shaped Gaussian function (green) and a fit
of an elliptically shaped Gaussian function (red). The dashed vertical lines indicate the circular
polarization states ε = ±1 and the horizontal dashed lines the displacement ∆x = λ/(2π). For
|ε| 6 1 all position determination methods lead to the same apparent displacement. For |ε| > 1
the centre of mass method shows a much smaller displacement than the other three methods,
which lead to roughly the same displacement. Also they lead to a maximum displacement which
is much higher than the one of the centre of mass method and the maximal overall displacement
even exceeds the optical wavelength.

With the knowledge of the intensity distribution Iell(ρ, φ, ε) in the image plane, it is now
possible to use other methods to determine the position of the emitter other than the center of
mass estimate.

We now focus on the offset between the emitter’s real and its apparent position when using
other methods for position determination than the center of mass estimate.17 A very prominent
method to localize emitters by their images is the Gaussian fit, which is known to be a very
reliable tool in position determination [87]. A more precise method is to fit the known point
spread function of the imaging system to the measured intensity distributions, where the point
spread function can either be theoretically or experimentally determined. In the framework of
this section it is given by expression 2.64 with ε being solely imaginary valued for a solely

17Thereby we neglect any knowledge of the apparent displacement of the emitter and try to measure an emitters
position assuming it is linearly polarized orthogonal to the optical axis. We do this to get an estimate of the apparent
displacement one would measure when not aware of the effects presented in this thesis.
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linearly polarized dipole.
Figure 2.9 shows the apparent shifts of the particle’s position caused by fitting the theoretical

point spread function of a linearly polarized dipole and two Gaussian based fitting functions
(circular and elliptical) plotted as a function of the real valued ε. For |ε| < 1 these methods
give the same apparent position. While the center of mass starts to separate at |ε| > 1, the other
position determination methods still give a very similar apparent displacement, which is larger
than the one obtained by the center of mass estimate.

A major consequence of this study is, that although one might intuitively think so, the cen-
troid of an elliptically polarized dipole does not coincide with its real position and that more
sophisticated methods are required to determine the position of an emitter with unknown polar-
ization state (see chapter 5).

2.3 Summary

In this chapter we showed that the local linear momentum of the light emitted by a dipole can
feature transverse components, which causes a tilt of the local propagation direction with respect
to the radial direction. The local linear momentum averaged over an aperture gives rise to
a displacement of the center of mass of the image of the emitter, which in turn leads to the
assumption that the emitter is at an apparent position, where in fact it is not.

In order to investigate the effect of elliptically polarized dipoles on other position estima-
tion methods than the center of mass estimate, we determined the image formed by a two lens
system with Fourier optics. With an analytical expression for the image of an elliptically polar-
ized dipole formed in the image plane it was possible to study different position determination
methods. Moreover it was possible to reproduce the shift of the center of mass of the images.

Both methods used to determine the displacement of the center of mass in the image of an
elliptically polarized emitter lead to the same analytical expression and concludingly to the same
apparent displacement of the emitter. This is an outstanding result since both methods used quite
different approaches.
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CHAPTER 3
Measurement of apparent

displacement due to SOI

3.1 Introduction

In this chapter, an experimental setup will be presented, in which the spin–orbit coupling of
light emitted by a spherical gold nanoparticle manifests as a mismatch between the measured
position of the emitter determined in images which are taken for different polarization states of
the nanoparticle. Therefore, the particle is deposited on a sub wavelength diameter waveguide,
realized by an optical nanofiber and illuminated by the evanescent field of the latter (see Figure
3.1). This evanescent field features locally linearly polarized light and almost circularly polar-
ized light, depending on the azimuthal position with respect to a quasilinear polarization in the
nanofiber. Using light of different polarizations in the fiber, it is thereby possible to illuminate
the nanoparticle with linearly and circularly polarized light, which then, due to its properties,
defines the particle’s polarization state. Images taken of the linearly polarized particle act as a
reference of the particles real position and images taken of the circularly polarized particle reveal
that it seems to have been displaced. While using nanoparticle-nanofiber samples with different
particle and fiber diameter, which leads to different elliptical polarizations at the position of the
particle on the fiber surface, we could not only measure different apparent positions due to the
spin–orbit coupling, but also observed the effect of an apparent displacement when defocusing
the imaging system. The reason for this effect in this particular setup is that the field emitted
by the particle is a superposition of the directly emitted and on the fiber reflected field, which
features a strong anisotropy along the aperture of the imaging system.
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Figure 3.1: Experimental setup. a, A nanofiber oriented along the x-axis with a nanoparticle
on its surface which faces towards an imaging system. Light which is linearly polarized along
the y-axis is coupled into the nanofiber and causes the evanescent field at the position of the
nanoparticle to be also vertically linearly polarized. This polarization configuration is used
to take images from the nanoparticle in which its real position is determined. b, The same
setup where light which is linearly polarized along the z-axis is coupled into the nanofiber. The
corresponding evanescent field is at the position of the nanoparticle elliptically polarized. In
images the particle now appears to be displaced with respect to the reference images.

3.2 Preparing a single nanoparticle

In order to quantitatively investigate the effects of spin–orbit coupling on position measure-
ments using far field optical imaging, it is necessary to find a suitable sub-wavelength sized
emitter which provides the possibility to arbitrarily control its polarization state. Also, it needs
to maintain this property in the experimental environment over the time scale of the experiment
and should not change any characteristics, such as shape or chemical composition which might
change its polarizability. Another necessity of the emitter is the possibility to deposit it on a
substrate, where it stays in place, which makes it much easier to measure an apparent position
with respect to its real position, since short term drifts, as one would have to deal with if the
emitter is in a liquid solution, are ruled out.

Within the experimental procedure, it is a very important task to image only one single
emitter within the diffraction limited range of the resolution of the imaging system. Otherwise,
interference of the emitted light from two or more emitters could modify the single emitter
emission pattern, thereby disturbing the predicted apparent shift. Moreover, collective effects of
the emitters could change their emission behaviour in general if they are very close together or
even touch each other.
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3.2. Preparing a single nanoparticle

We found that the properties of spherical gold nanoparticles match our experimental needs.
To assure that we image a single emitter, we deposited a gold nanoparticle on a nanofiber, which
provides a handy tool to prove the presence of a single particle via absorption spectroscopy.

3.2.1 Selecting a suitable emitter

The above requirements are fulfilled, for instance, by metal nanoparticles or metal-coated nano-
shells with a dielectric core. Due to oscillations of the electrons near the surface driven by an
external electromagnetic field, such particles emit light of the same wavelength as the illumi-
nating light field. These collective oscillations are called surface plasmons [88] of which the
resonance lies often in the visible spectra. The optical properties of these emitters are highly
dependent on their shape [88–91]. While a nanorod has a dipole moment which is dominant
along its elongated axis, a nanosphere has in any spatial direction the same dipole moment. As
a result of the spherical shape these particles can be considered ideal, rotationally symmetric,
dipole emitters that copy the polarization state of the illuminating light field [92, 93], which
is sometimes described as polarization maintaining. In summary, these nanospheres fulfil our
experimental needs. Furthermore, the surface plasmon resonances for spherical metal nanoparti-
cles are quite broad, up to several nanometers, and depend on the radius of the sphere. For metal
nanoparticles, they lie within the visible spectra. Thus, spherical metal nanoparticles are very
well suited for our experimental purposes. Gold and silver are typical materials used to produce
such nanoparticles which feature for a diameter of 100 nm a surface plasmon resonance with a
wavelength of about 550 nm.

For our experiments we choose spherical gold nanoparticles with diameters in the range of
80 nm to 125 nm which have a absorption maximum at a wavelength of about 535 nm to 590 nm
when surrounded by water. Gold nanoparticles have evolved to be a widely used tool [91, 94]
in research and medicine where they are deployed for sensing, labeling and imaging in bio-
nanotechnology [95–97], or in cancer treatment [90]. Moreover, gold nanoparticles are used
in super-resolution microscopy where accuracies in finding particles positions below 10 nm
are stated [60, 98–101]. Since they consist of a noble metal, gold nanoparticles provide an
excellent chemical stability. However, this chemical stability is not sustainable when going to
very small particle sizes. Below diameters of 10 nm gold particles lose some of their noble
metal properties [102]. In terms of mechanical stability, gold nanoparticles are slightly harder
and more elastic than the bulk material [103]. It is known that for very small particle sizes,
the melting point of gold decreases [104], but this happens far in the sub nanometre regime,
where the melting temperature is reduced by a factor of two at a particle diameter of about 5 nm.
However, when illuminating gold nanoparticles with high intensity light fields it is still possible
to melt the particle, which was shown by [105] where an intensity of 8 · 109W/m2 melts an 80
nm diameter gold nanoparticle.

The presented properties make spherical gold nanoparticles highly suitable for measure-
ments of a shift of the particles position dependent on their polarization within the planed ex-
periment. The mentioned drawbacks of very small particle sizes do not affect the particles we
want to use since their size is well above the threshold of 10 nm and consequently the chemical,
mechanical, and thermal stabilities are granted.
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3.2.2 Preparing a single gold nanoparticle

Figure 3.2: Deposition of a nanoparticle on a nanofiber. Using a syringe needle, small
droplets of a suspension containing nanoparticles are prepared. These droplets are brought in
contact with the horizontally aligned nanofiber. This process is done with a three axis translation
stage and monitored with a microscope. One end of the nanofiber is attached to a white light
source and the other end to a spectrometer recording the spectra of the white light source. An
individual nanoparticle which is deposited onto the nanofiber is recognized by a characteristic
absorption peak in the transmitted spectra

To assure to image a single nanoparticle, we use a technique which was developed in ear-
lier experiments [35, 106]. In this technique, we deposit a single gold nanoparticle on a sub-
wavelength diameter optical waveguide, realized by a nanofiber [107, 108] which we produce
from standard single mode optical fibers in a heat and pull process. Through the evanescent
field, these nanofibers provide a strong light–matter interaction between the light guided by the
fiber and objects close to the surface. The evanescent field decays exponentially over a few
hundred nanometres above the surface of the nanofiber. This strong interaction allows us to de-
tect individual nanoparticles using an absorption spectroscopy measurement via the nanofiber,
which is described in the next subsection (3.2.3). The deposition of single nanoparticles onto the
nanofiber is done by directly touching the nanofiber with a droplet of a suspension containing
the nanoparticles. The nanoparticles are fabricated by BBI Solutions and Nanopartz and are
suspended in deionized water. Using a syringe with a very thin needle, we can prepare small
droplets of nanoparticle suspension which can be positioned by a three axis translation stage
along the nanofiber, see Fig. 3.2. This process is monitored with a standard optical microscope.
We vertically approach the nanofiber with the droplet until they are in contact. The point where
the nanofiber and the droplet are in contact can be live monitored by measuring the absorption of
the light guided through the nanofiber, since the droplet scatters a lot of light from the evanescent
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field. Moreover, it is possible to see the light scattered by the droplet in the microscope image.
After a few seconds in which the droplet remains in contact with the fiber, the droplet is removed
again. If a nanoparticle was successfully deposited on the nanofiber can be examined with the
absorption spectroscopy, where the presence of a nanoparticle manifests as a characteristic ab-
sorption peak. Additionally, it is possible to conclude from the absorption spectra if one or more
particles were deposited and if they are clustered [106]. When no nanoparticle was deposited
on the nanofiber, the transmission is unchanged and the whole process of bringing the fiber in
contact with the droplet is repeated. By sending laser light trough the fiber which is roughly
resonant with respect to the surface plasmon resonance any nanoparticles on the fiber surface
are illuminated by the evanescent field and can be imaged with the microscope. This provides
additional optical evidence of a successful deposition and is a supplementary method to distin-
guish between separated or clustered particles. Numerous sample preparations have shown that
it is unlikely to deposit more than one nanoparticle within this setup and procedure and that the
probability for a successful deposition is highly dependent on the density of nanoparticles in the
suspension. Figure 3.3a shows a microscopy image of the nanofiber with three gold nanorods
on the surface of the fiber. The same fiber is shown in Figure 3.3b after an additional deposition
attempt of spherical nanoparticles with the droplet visible in the upper part of the image and a
spherical nanoparticle with a diameter of 100 nm located a few microns right of the nanorods,
which where already on the fiber. This nanoparticle is much brighter than the single nanorods.
The corresponding absorption spectra is shown in Figure 3.5b. In general, repeating the above
described procedure until the characteristic change in the transmission through the nanofiber
is observed allows depositions of a single gold nanoparticle onto a nanofiber with a success
probability close to one.

Figure 3.3: Microscopy images of the deposition process. a, Shows the nanofiber in the
lower part of the image with three nanorods on it. The width of the image is about 500 µm.
b, Shows the same fiber after an additional deposition attempt where the droplet provided by a
syringe needle with a diameter of 400 µm is still visible in the upper part of the image. About
80 µm right of the two nanorods, which are close together, a gold nanoparticle with a diameter
of 100 nm was deposited which scatters much more light of the evanescent field of the fiber
than the nanorods. This nanoparticle was used for all measurements presented in chapter 4. Its
absorption spectra is shown in Figure 3.5b.
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3.2.3 Nanofiber based spectroscopy

In order to detect nanoparticles on the surface of a nanofiber, we do an absorption spectroscopy
measurement through the fiber [109,110]. A detailed description of the theory and the deposition
process of a single gold nanoparticle on a nanofiber can be found in [106]. When spectral broad
light is sent through the nanofiber, every scatterer on the fiber surface will interact with this
light, which consequently modifies the spectra due to the scattering or absorption of light from
the evanescent field. The modification of the light’s spectra is caused by the physical properties
of the scatterer. A gold nanoparticle causes a different change in the transmitted spectra than
a dust particle. In principle there are two processes that reduce the transmission through the
nanofiber, which are the scattering into free space or in opposite propagation direction of the
fiber and absorption in combination with non-radiative decay, which causes the nanoparticle to
heat up.

To describe the change in the transmitted spectra it is common to use a quantity called
absorbance, which is defined as

A = − log10(T ), (3.1)

where T is the power transmission given by

T =
P0 − Pext

P0
. (3.2)

Here P0 corresponds to the transmitted power through the nanofiber before a nanoparticle has
been deposited on the fiber surface and P0 − Pext corresponds to the transmitted power after
the deposition, while Pext describes the power which is extinguished by the nanoparticle. In
general the interaction between the gold nanoparticle and the evanescent field of the nanofiber
is dependent on the radius of the nanoparticle RNP, the radius of the nanofiber RFib and the
polarization and the wavelength λ of the guided mode in the fiber and the respective angular
position of the nanoparticle on the nanofiber surface. We now consider a quasi-unpolarized light
source which, can be approximated by an incoherent, equal superposition of two orthogonal
fundamental fiber modes propagating in the same direction. Since the nanofibers used in our
experiments are single mode, this is an appropriate model and therefore it is not necessary to
take the nanoparticles angular position into account. The extinguished power is the sum of the
scattered and absorbed power. Therefore, the absorbance can be decomposed into an absorption
induced (Aabs) and a scattering induced (Asca) fraction.

A(λ,RFib, RNP) = Aabs(λ,RFib, RNP) +Asca(λ,RFib, RNP) (3.3)

with

Aabs(λ,RFib, RNP) = − log10

(
1− Pabs(λ,RFib, RNP)

P0(λ,RFib)

)
, (3.4)

Asca(λ,RFib, RNP) = − log10

(
1− Psca(λ,RFib, RNP)

P0(λ,RFib)

)
, (3.5)
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where Pabs denotes the absorbed power and Psca the scattered power. The absorbed and scat-
tered power can be described via the free-space absorption and scattering cross sections σabs
and σsca, times the local intensity of the evanescent field at the position of the nanoparticle,
I(λ,RFib, RNP). Therefore the absorbance can then be written as

Aabs(λ,RFib, RNP) = − log10

(
1− σabs

I(λ,RFib, RNP)

P0(λ,RFib)

)
, (3.6)

Asca(λ,RFib, RNP) = − log10

(
1− σsca

I(λ,RFib, RNP)

P0(λ,RFib)

)
. (3.7)

The absorption and scattering cross sections of a gold nanoparticle can be determined via Mie
theory [111], in which Gustav Mie described the absorption and scattering of spherical objects
with a diameter on the order of the wavelength in 1908. A full description of how to determine
the absorption and scattering cross section of spherical metal nanoparticles can be found in [112]
and [113]. In combination with the intensity distribution of the nanofiber mode [14], it is possible
to estimate the transmission change of the light guided trough the fiber due to the presence of a
nanoparticle on the fiber surface.

For the two most frequently used combinations of nanoparticle diameter and nanofiber di-
ameter in the experiments, the calculated absorbances are plotted in Fig. 3.4a and b. In both
cases, the extinction of the fiber guided light due to absorption is higher than due to scattering.
The transmission for the two combinations of nanoparticle and fiber diameter are plotted in Fig.
3.4c. It is shown that a single gold nanoparticle extinguishes up to 7% of the guided power in the
nanofiber at its surface plasmon resonance, which underlines the strong light matter interaction
of nanofibers. Figure 3.4c shows the absorbance of a nanoparticle with a diameter of 100 nm
and a nanofiber with a diameter of 410 nm and, for comparison, the absorbance if the diameter
of the particle or fiber is changed by ±10 nm.

Figure 3.5 shows the experimentally obtained absorbance for different nanoparticle and
nanofiber diameters together with the corresponding theoretically predicted absorbance. In each
subfigure, three measured absorption spectra are shown, which originate from three individual
nanoparticles. From each presented set of absorption spectra one of the corresponding nanopar-
ticles were used for further measurements which will be presented in this and the next chapter.
While in figure a and b the measured wavelength of maximal absorbance fits quite well to the
theoretical prediction, one observes substantial differences between the theoretical predicted
and the experimental measured absorbance in Figure 3.5c. Since the absorption spectra are very
similar, these three samples are very likely featuring the same nanoparticle and nanofiber diam-
eter. The mismatch of the theoretical prediction and the experiment might stem from a wrong
nanoparticle diameter.1 According to the theory, a nanoparticle diameter, which is increased by
25% would fit much better to the measured absorption spectra. However, it is likely that for
this particle size the theory enters a regime where it no longer provides a good prediction for
the absorbance as our theory is limited on the dipole moment of the emitter and neglects higher

1All the 125 nm nanoparticles were taken from the same package but their diameter was not verified by us. Since
the presented absorption spectra where recorded with several weeks in between the individual measurements and the
diameter of our nanofibers is regularly checked it is very unlikely that the mismatch between theory and experiment
is caused by a wrongly assumed nanofiber diameter.
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Figure 3.4: Calculated absorbance and transmission. a and b, Show the absorption by a
nanoparticle of light guided in a nanofiber for two different sets of particle and fiber diameters.
Beside the overall extinction (blue), the composing absorption induced (yellow) and scattering
induced (green) fractions are plotted. c, Shows the remaining transmission of the fiber guided
light for the two sets of nanoparticle and nanofiber diameters. d, Compares the absorbance of
nanoparticle with a diameter of 100 nm and a nanofiber with a diameter of 410 nm with the
absorbance if the diameter of the particle or fiber is changed by ±10 nm.

order momenta. Apart from the shift of the resonance for large (125 nm) diameter nanoparticles
the measured absorbance data fits well to the theoretically predicted values and together with
electron microscope measurements [106], we can conclude these spectra stem from single gold
nanoparticles sitting on the surface of the nanofibers.

The presented derivation of the absorbance ignores the fact that the presence of the nanofiber
influences the free space scattering of the nanoparticle. While a nanoparticle in free-space would
scatter light accordingly to its polarization state, the nanofiber changes the mode density of the
electromagnetic field around the particle and therefore changes the intensity distribution of the
emitted light. Moreover, the guided fiber modes provide additional radiation channels for the
nanoparticle, see [114]. While the enhanced free-space radiation and the light scattered in back-
ward directed fiber modes (towards the light source) decrease the transmitted power, light scat-
tered into forward fiber modes again increases the transmitted power, which needs to be taken
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Figure 3.5: Measured absorption spectra. a, b and c show each three measured absorp-
tion spectra, while every subfigure corresponds to a different combination of nanoparticle and
nanofiber diameter. In every subfigure the spectra NP 1 belongs to a nanoparticle which was
used for further measurements which are going to be presented in this and the following chapter.
Besides the experimentally measured spectra the theoretical determined absorbance is plotted.

into account for a more accurate description. Also, the absorption of light by the nanoparticle
is influenced by the nanofiber since the presence of the fiber changes the surrounding of the
nanoparticle which now does not exhibit a homogeneous refractive index, but a highly inhomo-
geneous one. The refractive index of the medium surrounding the nanoparticle is an important
parameter when determining the absorption and scattering cross section of the particle. An inho-
mogeneous refractive index surrounding the nanoparticle leads to a modification of its absorption
properties.

3.3 Illuminating the nanoparticle via the nanofiber

With a gold nanoparticle sitting on the surface of a nanofiber, it is possible to illuminate the
particle with linearly and elliptically polarized light via the evanescent field of the nanofiber,
see Figure 3.1. In the evanescent field, the elliptical polarization rotates in a plane of which the
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surface normal is orthogonal to the propagation direction, i.e. the fibers roll axis, which is in
contrast to elliptically polarized beams, where the field rotates in a plane which is perpendicular
to the propagation direction. The polarization state at the position of the nanoparticle is thereby
dependent on the polarization of the light in the nanofiber. Therefore the azimuthal position of
the nanoparticle on the nanofiber needs to be measured. When imaging the nanoparticle while
it is illuminated with linearly polarized light, its real position can be determined from the corre-
sponding image. Afterwards, the nanoparticle is imaged while being illuminated with elliptically
polarized light and an apparent displacement with respect to the measured real position can be
found. In order to be able to switch fast between the different polarized illuminating light fields,
a specific laser setup was build.

3.3.1 Experimental setup

In order to image a nanoparticle which is illuminated via the evanescent field of the nanofiber,
the latter is mounted horizontally and a microscope is placed such that the optical axis of the
imaging system is orthogonal to the fiber axis, see Figure 3.1. The imaging system is used to
monitor the deposition process, which was also done in this setup.

Several investigations of a nanofiber and nanoparticle sample in a scanning electron micro-
scope showed that the deposited nanoparticles sit most likely on the top region of the nanofiber
and rarely on the side. A nanoparticle which got somehow stuck to the nanofiber on the bottom
region was never observed. Within the measurements of the particles real and apparent position,
it was desirable to have the nanoparticle facing exactly towards the imaging system in order to
be able to illuminate it via the evanescent field with light fields which are either linearly polar-
ized orthogonal to the imaging axis or elliptically polarized. To adjust the azimuthal position of
the nanoparticle with respect to the optical axis of the imaging system, the fiber was attached
to a rotation mount which gave the possibility to rotate the nanofiber around its roll axis. The
measurement and adjustment of the azimuthal position of the nanoparticle is presented in the
next subsection 3.3.1.1.

After the deposition and azimuthal position measurement the two ends of the fiber which
were first used for the fiber based absorption spectroscopy (see 3.2.3) were connected to the
laser setup, which is described in subsection 3.3.1.3. It provides for each fiber end two arbitrarily
adjustable, but orthogonal polarized modes. Their polarization was aligned to be orthogonal and
parallel to the imaging axis, which caused the evanescent field at the position of the nanoparticle
to be linearly and elliptically polarized.

3.3.1.1 Azimuthal position of the nanoparticle

To find the azimuthal position of the nanoparticle on the nanofiber with respect to the optical axis
of the imaging system, we made use of the modification of the free space emission pattern of the
nanoparticle by the presence of the nanofiber. For this purpose, we look into the electric field
close to the nanofiber when it is illuminated by a plane wave. Due to refraction and lens effects,
the incident plane wave gets modified near the nanofiber [106, 115]. The intensity distribution
of the resulting field is plotted in Figure 3.6a for the two cases of incident plane waves that are
linearly polarized along the y- and z-axis. In both cases, there exists a maximum of intensity

38



3.3. Illuminating the nanoparticle via the nanofiber

behind the fiber, with respect to the incoming plane wave, and a minimum of intensity in front
of the fiber.

Figure 3.6: Azimuthal position of the nanoparticle. a, Modification of plane waves close
to a nanofiber. The plan waves have a wavelength of 523 nm and are linearly polarized along
the y- and z-axis. The nanofiber has a diameter of 320 nm. Due to refraction and lens effects, a
maximum of intensity appears behind the fiber and a local minimum in front of it in the modified
fields Ey and Ez. The propagation direction of the incident plane waves is along the x-axis as
indicated by the white arrows. The intensity plots are normalized to the maximum of Ez2.
b, The power radiated from the nanoparticle measured with a microscope by summing up the
photon numbers in a certain area around the image of the nanoparticle on the CCD chip, plotted
with respect to the rotation angle of the nanofiber. The deposition process of the nanoparticle
was done while the fiber was at a rotation angle of α = 90◦, where the nanoparticle is assumed
to be deposited roughly on top of the fiber. Subfigure a indicates that when the fiber is rotated
such that the nanoparticle is behind the fiber with respect to the imaging system it emits more
light towards the imaging system than when the particle is placed in front of the fiber. This can
be seen in the experimental data as it features a minimum of measured power at about α ≈ 0◦

and a maximum at α ≈ 180◦. A simple polynomial fit of the data around α = 0◦ reveals that the
nanoparticle was not deposited perfectly on top of the fiber but with an offset of 6.7◦ towards
the back of the fiber. Note that due to the geometry of the nanofiber mount (fiber holder) it was
not possible to image the nanoparticle under all rotation angles of the fiber.

Analogically a nanoparticle which is illuminated by the fiber guided light and placed be-
hind the fiber will emit more power towards the imaging system than a particle which is placed
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in front of the fiber. Thus, measuring the brightness of the nanoparticle with the microscope
allows detection of its position along the circumference of the nanofiber. In order to prevent
any influence of the polarization of the illuminating light on the particle’s emission pattern, the
nanoparticle should be illuminated by unpolarized light. The quasi unpolarized light was real-
ized by sending a superposition of two orthogonal polarized fiber modes, which were slightly
frequency shifted by an electro-optic modulator. When imaging the nanoparticle illuminated
with the quasi unpolarized light, the local polarization of the light at the position of the nanopar-
ticle will rotate along a great circle on the Poincarre-sphere and, thus, on average, the light
emitted by the nanoparticle will have no net polarization. The power emitted by the particle
towards the imaging system was measured by summing up the total number of photon counts
in a certain region of the images taken of the nanoparticle. This was done for different rotation
angles of the fiber. Figure 3.6b shows the data of such a measurement for a fiber with a diameter
of 320 nm, a nanoparticle with a diameter of 80 nm and a laser used to illuminate the nanopar-
ticle with λ = 532 nm. At the time of the deposition of the nanoparticle the rotation angle of
the fiber was α = 90◦. Assuming the particle is deposited roughly on top of the fiber, a local
minimum of the measured power should be visible at α ≈ 0◦ and a maximum at α ≈ 180◦,
which is indeed the case. Note, that due to the geometry of the nanofiber mount (fiber holder)
it was not possible to image the nanoparticle under all rotation angles of the fiber. A simple
polynomial fit was used to determine the minimum of the measured power. This measurement
indicates that the nanoparticle was not deposited perfectly on top of the fiber, but with an offset
of 6.7◦ towards the back of the fiber. After this measurement and the analysis it was possible to
rotate the fiber such that the nanoparticle pointed directly towards the imaging system.

3.3.1.2 Imaging system, magnification

The imaging system consists of an infinity corrected objective by Mitutoyo (20X Mitutoyo Plan
Apo SL Infinity-Corrected Objective), an infinity tube with a lens which forms an image at a
CCD camera (Matrix Vision mvBlueFOX3-1013G-2212) with a pixel size of 5.3 µm ×5.3 µm.
The objective has a NA of 0.28, a working distance of 30.5 mm, a nominal magnification of 20
and an effective focal length of 10 mm. In order to experimentally determine the magnification
of the overall imaging system, we used a piezo driven translation stage which moves the whole
imaging system orthogonal to the optical axis. To rule out errors from hysteresis or similar ef-
fects of the piezo element, a feedback element was used which returns a voltage dependent on
the distance the piezo was moved. This system has been calibrated via an optical interferom-
eter. To measure the magnification of the imaging system, the movement of the nanoparticle
is monitored when the piezo moves the imaging system for a few microns orthogonal to the
optical axis. For this purpose, the nanoparticle is illuminated via the evanescent field of the
nanofiber with linearly polarized light. In the different images, the position of the nanoparticle
is fit with a two dimensional Gaussian fit, see 4.3. The magnification can then be determined
by the product of the distance between the two measured positions in pixels and the pixel size
of the CCD chip, divided by the distance for which the imaging system was translated. This
measurement is done 20 times in a row to check its reproducibility and to obtain with the mean
value of this measurements a statistically significant value for the magnification. From this we
obtain for two different realizations of of the imaging system magnifications of M = 71.6(1)
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and M = 13.92(0.1). The presented error is the standard error of the mean value of the 20 de-
termined magnifications, given by σ/

√
N , where σ is the standard deviation and N the number

of measurements. In order to reduce the size of the imaging system the length between the lens
of the infinity tube and the CCD chip was reduced which therefore decreased the magnification.

3.3.1.3 Illumination setup

Figure 3.7: Illumination setup. A initial linearly polarized laser beam is split up by a polarizing
beam splitter, where it is possible to change the power in the split up beams with a half wave
plate in front of the beam splitter. Both beams are again split up in the same procedure, but
then recombined via additional polarizing beam splitters. Before the two pairs of orthogonally
linearly polarized beams are coupled into a fiber they pass a Berek compensator. This allows
to arbitrarily adjust the polarization of the light fields in the fiber to correct for birefringence,
while the orthogonality is conserved. Mechanical shutters provide the possibility to switch fast
between the orthogonal fields in the output fibers.

In order to measure an apparent shift of the position of a gold nanoparticle on a nanofiber,
we want to illuminate it via the evanescent field of the nanofiber with light fields, which are
linearly and circularly polarized. Since an image of the linearly polarized particle reveals its
real position and an image of the circularly polarized particle should show a displacement, it is
desirable to quickly switch between these light fields. This rules out long term drifts and we
can measure the apparent displacement more precisely. The corresponding light fields in the
nanofiber which feature linear and circular polarization in the evanescent field at the position of
the nanoparticle are orthogonally polarized inside of the nanofiber (see 3.3.1.4). When changing
the propagation direction of the light fields in the nanofiber the sense of rotation of the circularly
polarized field is changed, which can be used to measure the same apparent displacement in
opposite directions. Therefore, it is convenient to have a illumination setup which provides
orthogonally polarized light fields inherently, of which the polarization is adjustable without
destroying the orthogonality.

For this purpose, a setup was designed which is shown in Figure 3.7. We used a laser diode
module from Thorlabs with a wavelength of λ = 532 nm and a DLC TA pro by Toptica laser
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with a wavelength of λ = 685 nm as light source for illuminating the nanoparticle . The initial
linearly polarized beam is divided by a polarizing beam splitter cube, where it is possible to
adjust the power of the two outcome beams via a half wave plate in front of the cube. These two
beams are again split up by polarizing beam splitter cubes with the same possibility to adjust
each beam’s power. After passing a mechanical shutter, the two beam pairs are recombined via
polarizing beam splitter cubes. Consequently, the two resulting beam pairs contain orthogonal
linear polarizations. Before coupling into a fiber, both beam pairs pass a Berek compensator
which allows to adjust their polarizations and to compensate in this way the birefringence of the
fiber. This setup provides two sources of light with an arbitrary set of two orthogonal polarization
states, which are sent along the two directions of the nanofiber. With the use of the mechanical
shutters it is possible to quickly switch between the different light fields.

3.3.1.4 Polarization alignment and data acquisition sequence

In this measurement the nanofiber is not only used as a mount for an individual gold nanoparti-
cle, but also to illuminate it with light of different polarizations to measure an apparent position
of the nanoparticle. Therefore we make use of the evanescent field of nanofibers which fea-
tures, depending on the polarization of the light in the fiber, either linearly polarized or almost
circularly polarized light [14], see appendix A.10.

We now consider the experimental setup which is depicted in Figure 3.1. A nanofiber is
oriented along the x-axis and a gold nanoparticle deposited on its surface faces towards an
imaging system of which the optical axis equals the z-axis. When light quasi linearly polarized2

along the y-axis is guided in the fiber, the evanescent field is also linearly polarized along the
y-axis at the position of the nanoparticle, see Figure 3.1a. On the other hand, when light which is
quasi linearly polarized along the z-axis is guided in the fiber, the evanescent field at the position
of the nanoparticle is almost circularly polarized, see Figure 3.1b. In contrast to a circularly
polarized beam, where the light field rotates in a plane that is perpendicular to the propagation
direction, the strong transverse field gradients in the nanofiber give rise to elliptically polarized
light fields rotating in a plane of which the surface normal can be fully perpendicular to the
propagation direction. When flipping the propagation direction of the light field in the nanofiber,
the sense of rotation of the elliptically polarized light is changed.

In order to illuminate the nanoparticle with linearly and elliptically polarized light, it is nec-
essary to align the polarization of the fiber guided light linear along the z- and y-axis. This
was done by adding a linear polarizer just in front of the first lens of the imaging system. This
polarizer is aligned such that the transmitted light is linearly polarized parallel to the nanofiber.
If the nanoparticle is illuminated by vertically linearly polarized light, its scattered light field is
almost solely vertically linearly polarized at the position of the polarization filter (see appendix
A.7) and thus blocked by the latter. This allows one to adjust the polarization of the evanes-
cent field with the use of the Berek compensator from the illumination setup by minimizing the
power measured from the emitting nanoparticle. This alignment procedure automatically adjusts

2When linearly polarized light is coupled into a nanofiber the strong confinement gives rise to field components
which are longitudinal to the propagation direction of the fiber. Only in the center of the fiber the light is solely
linearly polarized.
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the polarization of the second light field, which features the orthogonal polarization state to the
initial one, to be quasi linearly polarized along the z-axis, which exhibits elliptical polarization
at the position of the nanoparticle. The adjustment procedure was done for both arms of the illu-
mination setup such that it was possible to send light with the described polarization states from
both fiber ends to the nanoparticle. We now label the fiber modes propagating from left to right
(as seen from the imaging system) P E

1 and P L
1 and the corresponding counter propagating modes

as P E
2 and P L

2 . The indices E and L indicate the elliptical and linear polarization at the position
of the nanoparticle of the respective modes. With these four light fields it is possible to measure
the real position of the nanoparticle using P L

1 and P L
2 . The corresponding images from which

the particles real position is measured will be called reference images in the following. When
illuminating the nanoparticle with the elliptically polarized fields we expect a displacement of
the images where for P E

1 the particle will appear shifted to the right (positive x direction) with
respect to its real position and to the left (negative x direction) when illuminated with P E

2 .

Within one experimental run, four images were taken. In each image, the nanoparticle was
illuminated by one of the four fiber modes P E

1,2, P L
1,2. Images in which we await to see a dis-

placement of the particles position were alternatingly taken with the reference images. This was
done to minimize the time between a measurement of the particles apparent and real position
in order to keep the impact of mechanical or thermal drifts as small as possible. To accumulate
reasonable statistics up to 500 such experimental runs were performed in a row.

3.3.2 Directional emission and defocussing error

When calculating the expected displacement of the nanoparticle we expect some deviations from
the free-space situation as the presence of the nanofiber modifies the emission of the nanopar-
ticle. The light emitted by the particle is reflected by the fiber and, therefore, it interferes with
itself. This has two major impacts on the measurement of the particles apparent position. First
the local dipole polarization ratio ε is modified and second the emitted field features a directional
emission [116] which gives rise to another apparent displacement when the imaging system is
not properly focused.

To estimate these effects, we consider the simplified situation where the nanoparticle is
located on a dielectric interface. In this case, the field emitted by the particle into the xz-plane
can be calculated by superimposing it with the field of a mirror particle. This mirror particle is
located directly below the interface and emits light with a relative power given by the reflectivity
of the interface of R = 3.5%, which corresponds to the reflectivity the nanofiber. Using a
constant reflectivity is only valid for small angles with respect to the optical axis (z-axis). Within
an aperture of NA = 0.28 the reflectance varies only by about 5% and is therefore approximated
by the reflectance for perpendicular incident. The emitted field can than be determined by adding
to the complex dipole moment µ = (I ε ex+ez)/

√
1 + ε2 of the free space particle the reflected

amplitude µRef =
√
R(−I ε ex + ez)/

√
1 + ε2 eikdx of the mirror particle where eikdz gives

the phase shift of the field of the mirror particle with respect to the real particle at a distance dz
which is given by the nanoparticle diameter. From this two amplitudes we obtain a new effective
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Figure 3.8: Directional emission. a, A density plot of the norm of the real part of the electric
field caused by a elliptically polarized nanoparticle sitting on the surface of a nanofiber, which is
due to reflections on the fiber surface different to the one of a free space particle. The nanopar-
ticle is illuminated by the nanofiber with a fiber mode quasi linearly polarized along the z-axis
which causes the evanescent field at the position of the nanoparticle to be elliptically polarized.
The plotted field is a superposition of the field emitted by a free space particle and the field of
a mirror particle with a relative power 0.035 which corresponds to the reflectivity of the fiber.
This field was calculated for a nanoparticle with a diameter of 125 nm and a nanofiber with a
diameter of 410 nm. The illuminating light has a wavelength of 685/nm. b A density plot of
the intensity distribution of the same field. The white dotted curve shows the path of constant
intensity. The anisotropic emission pattern along the aperture of NA = 0.28, which is indicated
by the dashed lines is clearly visible.

dipole polarization ratio

ε̃ = ε · 1−
√
R eikdx

1 +
√
R eikdx

. (3.8)

In addition to changing the effective dipole polarization ratio ε of the emitted light, the inter-
ference of the field emitted by the nanoparticle with the field of its mirror image also gives
rise to a directional emission pattern such that the intensity distribution of the light is no longer
symmetric with respect to the z-axis.

Figure 3.8 shows the field emitted by a nanoparticle sitting on the surface of a nanofiber,
where in subfigure a the norm of the real valued electric field is plotted and in subfigure b the
intensity distribution. The corresponding fiber mode is linearly polarized along the z-axis and
propagates in −x direction. One can clearly see the anisotropic emission along the aperture of
NA = 0.28, which is indicated by the dashed lines.
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3.3. Illuminating the nanoparticle via the nanofiber

This anisotropy can also lead to an additional apparent displacement of the particle when
the imaging system is out of focus. It is well known, that in the imaging process of linearly
polarized dipoles an apparent displacement can occur, when the polarization axis is not parallel
or orthogonal to the optical axis of the imaging system and when the imaging system is slightly
out of focus [117, 118]. A lot of effort was put into the development of techniques to avoid this
error source [119–122] which can cause localization errors up to about 100 nm. The anisotropic
illumination of such tilted dipole emitters leads to a linear growth of the apparent displacement
with respect to the defocusing for small defocusing lengths [121, 122]. The main difference
to the polarization dependent apparent displacement presented in chapter 2 is, that while the
focus dependent displacement vanishes for perfect focusing in ideal optical imaging systems,
the polarization dependent displacement is still present. However, the polarization dependent
displacement stems from the fundamental scattering process of a dipole emitter.

3.3.3 Experimental results

Within the presented experimental setup, we used two different nanofiber - nanoparticle systems.
In a first experimental realization, a nanofiber with a diameter of 320 nm was used. A nanopar-
ticle with a diameter of 80 nm was deposited on that fiber. Figure 3.5a shows the corresponding
absorption spectra. The magnification of the imaging system was calibrated with the procedure
presented in section 3.3.1.2 to M ≈ 71.6(1). In order to find the azimuthal position of the
nanoparticle on the nanofiber, the measurement discussed in section 3.3.1.1 was performed for
this nanofiber - nanoparticle system.

When using the fiber modes P E
1,2 with a wavelength of 532 nm the local elliptical po-

larization at the position of the nanoparticle has a dipole polarization ratio of ε = ±1.73
(ε̃ = ±1.33∓ 0.42 i). In combination with the aperture of the used objective of NA = 0.28, the
theoretical predicted displacement including the effect from reflections of the nanofiber is given
by ∆xt = ±105 nm.3 In one experimental imaging sequence, the nanoparticle is successively
illuminated with the fiber modes P E

1 , P L
1 , P E

2 , P L
2 , while for every illuminating mode one image

is taken. In this measurement, the imaging sequence was repeated 500 times and the positions
of the nanoparticle in every image determined with a two-Dimensional Gaussian fit (see 4.3).
All measured positions are shown in Figure 3.9, where they are plotted with respect to an origin
which is given by the mean of all positions measured in all reference images. Subfigure a shows
the x positions obtained from the four images illuminated by the four different modes for the
500 runs, and subfigure b shows equivalently the y position. In subfigure c the y positions are
plotted with respect to the corresponding x for all experimental runs. It can be seen that there
is clearly an offset between the positions measured from the images where the nanoparticle was
illuminated with elliptically polarized light. The average values of the measured apparent dis-
placement are ∆x(Re(ε̃) = 1.33) = 123(1) nm and ∆x(Re(−ε̃) = −1.33) = −110(1) nm,
which agrees very well with the predicted value. These values were determined by taking the
mean value of the apparent displacements obtained from the images taken in the individual imag-
ing sequences, where the apparent displacement was measured in the images of the elliptically
polarized emitter with respect to the reference images in which the nanoparticle was illuminated

3In this and the following chapter the theoretical predictions of the displacement are denoted by ∆xt.
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from the same direction in the nanofiber. The given error is the standard error of the mean value,
which is caused by shot-to-shot drifts of the optical setup. Errors resulting from the error of the
magnification or in the fit of the positions are about one order of magnitude smaller than the
standard error, meaning that the precision of our position measurements is limited by the shot-
to-shot drifts.

For the displacement along the y-axis we expect no shift. Nevertheless we observe a small
offset between the y positions of the two different reference images, which can be seen in sub-
figure b. The mean value of the offset between the y positions measured in the reference images
using P L

1 and P L
2 is 45(1) nm. This offset, as well as the asymmetry between the two measured

apparent displacements ∆x is very likely caused by a small mismatch of the polarizations of the
counter propagating illumination modes. Although they are aligned using the same procedure
(see 3.3.1.4) it is possible that the aligned polarizations do not match perfectly. A small mis-
match between the polarizations of the modes used to take the reference images would than also
effect the images of the apparently displaced particle.

While the x position of the nanoparticle is, in general, quite stable and varies only within a
range of approximately 100 nm over the time of the measurements, which was about 10 minutes,
the y position underlies a much larger drift in a range of approximately 700 nm. This behaviour
is caused by the fact that the fiber is mounted horizontally, which features a much larger freedom
of movement in the plane orthogonal to the roll axis of the fiber than along the roll axis. For
instance, any temperature fluctuation of the fiber holder can change the strain of the fiber and
therefore change the y position of the nanoparticle. All images taken of the nanoparticle have
this long term drifts in common. Since the time scale of one imaging sequence is much smaller
than the time scale of this drifts the measurement of the apparent displacement, which was
always evaluated from images within the data-set of one individual imaging sequences, is not
influenced.

In order to image a nanorod in addition to a nanoparticle on the surface of a nanofiber we
changed the wavelength of the illuminating light and the diameter of the nanoparticle, to adapt
them to the resonance frequency of the used nanorod. The wavelength corresponding to the
surface plasmon resonance was much higher than the one of the 80 nm diameter particles and
the 532 nm laser. The purpose of the nanorod was to have an emitter which is strictly linearly
polarized. Such an emitter would, when properly focused, always reveal its real position and
could be used as a position reference on the fiber.

Eventually, we did not use nanorods as position marker on the nanofiber, since it was not
possible to image them properly at the same time with the nanoparticle, because the nanorods
emitted far less power than the nanoparticle. Additionally, we decided that it is more interesting
to measure the apparent position of a particle with respect to its real position and not the distance
to some far off object. Moreover we came to the conclusion that the nanoparticle which has a
ratio of diameter to length of 1/3 could still emit a highly elliptically polarized field, which can
lead to a large apparent displacement.

Still we worked with the new particles and laser and performed a measurement in which
the apparent displacement of the nanoparticle with respect to the relative focal position of the
imaging system was investigated. The used fiber had a diameter of 410 nm and the deposited
nanoparticle had a diameter of 125 nm. In Figure 3.5c, the corresponding absorption spectra
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3.3. Illuminating the nanoparticle via the nanofiber

Figure 3.9: Measured positions of the nanoparticle. a, The fitted position x0 of the nanoparti-
cle along the x-axis plotted for the effective polarization states Re(±ε̃) = ±1.33 (blue, yellow)
and ẽ = 0 illuminating the particle from left and right in the nanofiber (green, red) with respect
to an origin defined as the mean value of all positions measured in all reference images. An ap-
parent displacement of the images illuminated with the modes P E

1,2 with respect to the reference
images is clearly visible. b, The fitted position y0 of the nanoparticle along the y-axis plotted
for all fiber modes. A small offset between the positions measured in the reference images can
be seen. All images have the long term drift of the nanofiber in common. c, The fitted position
of the nanoparticle shown in one plot.

is shown. Since a measurement to find the azimuthal position of the nanoparticle is very time
consuming, it was not performed for this nanofiber - nanoparticle sample. After the deposition
of the nanoparticle the fiber was rotated by 90◦ such that the nanoparticle sitting on top then face
towards the imaging system.4 In combination with a 685 nm laser, the evanescent field of the
P E

1,2 mode provides a dipole polarization ratio at the position of the nanoparticle of ε = ±1.75
(ε̃ = ±1.42∓0.50 i). The theoretical predicted apparent displacement is ∆xt = ±142 nm. After
a modification of the imaging system its magnification was calibrated to M ≈ 13.92(0.1). In
addition to the previous presented measurement here the imaging system was scanned along the
z-axis in order to investigate the effect of defocussing on the apparent displacement. Therefore
the imaging system was moved along the optical axis over 22 µm with a step size of 1 µm
across the focus region. At each relative focus position 50 measurement runs were performed.
For each relative focal position the real position of the particle was obtained by taking the mean
of the position measured from all reference images, in which the nanoparticle was illuminated
with P L

1,2. We define the focus of the imaging system as the position where the highest local

4As the nanoparticle deposition process reliably positioned the nanoparticles on top of the fiber, with only minor
deviations, the time consuming azimuthal position scan was not performed for this nanofiber - nanoparticle system.
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3. MEASUREMENT OF APPARENT DISPLACEMENT DUE TO SOI

intensity was measured, which directly relates to the amplitude in the fit applied to determine
the particles position, see Figure 3.10a. The different maxima of the fit amplitudes for the
different illumination modes are caused by slightly different powers of the corresponding modes,
which have been adjusted in the illumination setup. The average displacement in the focus is
∆x(Re(ε̃) = 1.42) = 135(3) nm and ∆x(Re(−ε̃) = −1.42) = −140(3) nm. This values
agree very well with the theoretical predicted displacement.

Figure 3.10b shows the averaged apparent displacement ∆x as a function of the relative
focal position z, along with the standard error. It is clearly visible that the apparent displacement
strongly depends on the relative focal position. At z = −6 µm the image of the particle shows
the same displacement for both illuminating modes P E

1,2. For z > −6 µm the displacement
∆x(P E

1 )5 increases while ∆x(P E
2 ) decreases. Surprisingly, for z < −6 µm it is the other

way around such that ∆x(P E
1 ) and ∆x(P E

2 ) even switch signs. This behaviour stems from a
directional emission of the nanoparticle which leads to an inhomogeneous illumination of the
aperture of the imaging system, which in turn leads to a focus dependent apparent displacement,
as described in 3.3.2. The almost linear change of the displacement with respect to the relative
focal position agrees very well with other theoretical and experimental studies of this effect
[118, 121].

In addition to the apparent displacement in x direction the apparent displacement in y di-
rection is plotted in Figure 3.10b. Its standard deviation is higher than of the displacement in x
direction due to larger drifts of the fiber along the vertical axis. While ∆y(P E

2 ) is almost zero in
the focus region, ∆y(P E

2 ) is clearly non zero. This could stem from an imperfect alignment of
the polarization of the PE,L1 modes and from the possibility that the nanoparticle might not be
perfectly facing towards the imaging system. Nevertheless, in the focus the apparent displace-
ments in y direction are much smaller than the ones in x direction.

Figure 3.10c shows the waist of the image of the nanoparticle at the CCD chip obtained
by the Gaussian fit for the images illuminated with the modes P E,L

1 . It can be seen that the
waist is almost constant between the relative focus positions of −5 µm and −5 µm, while the
apparent position of the nanoparticle varies over 250 nm. Therefore the waist of the Gaussian
fit is not a suitable parameter to identify the focus in this setup. For large negative relative focus
positions, the waist is in between 25 µm and 30 µm, and decreases quickly for higher relative
focal positions to about 12 µm. This is due to a ring structure appearing in the defocused images
(see Figure 3.11), which the Gaussian fit takes into account. An inhomogeneous brightness
of such ring structures might lead to an additional apparent displacement, which is directly
caused by the fit. Consequently a two dimensional Gaussian is not a proper function to fit such
defocused images. Additionally it can be seen, that the waist of the reference images evolves
slightly different than the one of the images illuminated with P E

1 while going trough the focus
region. This is very likely caused by a deformation of the point spread function of an elliptically
polarized emitter, see Figure 2.8.

Figure 3.11 shows the images of the nanoparticle for z = −13 µm and z = 7 µm, which are
positions far off the focus, for z = −6 µm which is the position where both displacements in x
direction are the same and for z = 0 µm which is assumed to be the focus. The presented images

5The displacement ∆x(P E
1 ) is measured using images made when illuminating the nanoparticle with the mode

P E
1 and the corresponding reference images made using the mode P L

1 .
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3.3. Illuminating the nanoparticle via the nanofiber

are obtained by adding up all the corresponding individual images taken with the particular
illumination mode to correct for shot to shot noise and drifts. The reference images in this
plot, which indicate the real position of the nanoparticle, were obtained by averaging over both
sets of reference images, taken while illumination the nanoparticle with the P L

1,2 modes. The
white crosses obtained from the averaged reference image indicate the estimated real position
of the nanoparticle and the dashed ellipses show the apparent position as it was obtained by
the Gaussian fit, where the major axes of the ellipses correspond to the fitted waist in x and
y direction. The images show the evolution of the point spread function of the nanoparticle
in this imaging system when scanning through the focus region and that in the focus it is not
obvious visible that the displacement of the nanoparticle is only apparent. An image needs to
be further analysed to find out if the position of a particle is real or apparent, see Chapter 5. At
z = −13 µm it is visible that the image features a quite bright ring around the center spot. This
ring is very problematic for the fitting process, as seen in Figure 3.10c. The big waist of the
Gaussian fit shows that the ring is included in the fit. Due to inhomogeneous brightness of this
ring it is possible that the displacement might be wrongly measured.

Summarizing the first experimental taken data, it can be said that we have shown that there
can be clearly seen an apparent displacement in the image of a gold nanoparticle which was illu-
minated via the evanescent field of a nanofiber, which features local elliptical polarizations. Not
only was it possible to measure this apparent displacement but also does it fit very well to the
theoretical predicted values. The nanofiber - nanoparticle system turned out to be a handy tool to
demonstrate that there is an apparent displacement when imaging elliptically polarized emitters.
Admittedly the small uncertainty in the azimuthal position of the nanoparticle in combination
with the finite precision of the polarization alignment leads to an eventual mismatch between
the experimental results and the theoretical prediction. In addition it was possible to also mea-
sure the effect of an apparent displacement when defocusing the imaging system. Within this
measurements the displacement due to defocusing has the same order of magnitude as the dis-
placement due to the elliptically polarized emission of the particle.
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3. MEASUREMENT OF APPARENT DISPLACEMENT DUE TO SOI

Figure 3.10: Focus dependent displacement and fit parameters. a, The fit amplitude as
a function of the relative focus position z, plotted for the effective polarization states of the
nanoparticle Re(ε̃) = ±1.42 (blue, yellow) and ẽ = 0 (green, red) illuminating the particle from
left and right in the nanofiber. The different maxima in this curves are caused by different powers
of the illuminating fiber modes. Statistical errors are included in this plot, but are to small to be
seen properly. b, The apparent displacement ∆x(∆y) plotted for Re(ε̃) = ±1.42 in blue and
yellow (green and red) as a function of z. The change of ∆x is almost linear for z > −10 µm
and strongly non-linear for z < −10 µm. This is likely caused by the fitting process, and will be
understandable in the next subfigure. While for the images illuminated from the right ∆y ≈ 0
in the focus region, this is not the case for the images illuminated from the left. Nevertheless,
the apparent displacement ∆y is much smaller than ∆x in the focus region. c, The waist of
the two dimensional elliptical Gaussian fit at the CCD chip for Re(ε̃) = 1.42 along the x-axis
(y-axis) in blue (yellow) and for ε = 0 (illuminated with P L

1 ) along the x-axis (y-axis) in green
(red) plotted as a function of z. The difference in the evolution of the waist for Re(ε̃) = 1.42
and ẽ = 0 shows that the elliptically polarized particle features a different point spread function
than the linearly polarized one. At z = −9 µm the waist for ẽ = 0 dropped rapidly to about
one half of its value for lower relative focal positions. This is caused by a ring structure which
appears in the images at lower relative focal positions and is taken into account by the Gaussian
fit. A similar effect can be observed for Re(ε̃) = 1.42. An inhomogeneous brightness of such
ring structures might lead to a wrong estimation of the nanoparticles apparent displacement.
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Figure 3.11: Images of an elliptically polarized gold nanoparticle. Images of a gold nanopar-
ticle which is effectively elliptically polarized with Re(ε̃) = ±1.42 (upper and lower line) and
linearly polarized with ε̃ = 0 (middle line) for different relative focal positions z. The reference
images are obtained by averaging over all 100 reference images illuminated with the modes P L

1,2

and the other images by averaging over 50 individual images to correct for shot-to-shot noise and
drifts. The white cross indicates the estimated real position of the nanoparticle obtained from
the reference image and the white dashed ellipses show the apparent position as it was obtained
by the Gaussian fit, where the major axes of the ellipses correspond to the fitted waist in x and y
direction. The images show the evolution of the point spread function along with the change of
the apparent position when scanning through the focus region caused by the particles anisotropic
emission. Note that the Gaussian fit includes the ring structure in the images at z = −13 µm
which might lead to a wrong estimation of the apparent displacement due to inhomogeneous
brightness of the ring.
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CHAPTER 4
Measurement of polarization

dependent apparent displacement

While the previous presented experimental setup allowed us to show that the apparent shift of an
elliptically polarized emitter exists, it also had some drawbacks that prevented us from a precise
quantitative determination of the exact polarization of the emitter. With the use of the evanescent
field of the nanofiber the nanoparticle could only be illuminated by a single elliptical polarization
state. Measuring the apparent position of the nanoparticle using other elliptical polarization
states by using fibers with different diameter would have been a very time consuming method.
Moreover, the strong anisotropic emission along the aperture results in an additional strong
apparent displacement when the imaging system is not perfectly focused. Since any small drift
or defocussing, which is in general not an easy task to avoid, makes it very difficult to measure
the apparent shift caused by the elliptical polarization state of the imaged emitter. Therefore
we decided to design a far improved experimental setup, that is not subject to these issues and
effectively mimics the situation of a nanoparticle in free space. Moreover, this new setup is
related to immersion microscopy, which is a widely used method in optical microscopy and is
therefore a direct demonstration that emitters might appear at positions where they are actually
not in common microscopy setups.

4.1 Experimental setup

In order to have a single gold nanoparticle at a fixed position that behaves like a particle in
free space we positioned the nanofiber with the nanoparticle on it in between two half sphere
lenses with a manufactured diameter of 5 mm and filled the residual gap with index matching
oil, as shown in Figure 4.1. We took great care to ensure that the lenses and the nanofiber
have the same refractive index (fused silica n = 1.458) and chose the index matching fluid
accordingly. This setup provides a single gold nanoparticle in the middle of a glass sphere. Due
to the homogeneous refractive index around the nanoparticle and the spherical geometry with
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Figure 4.1: Experimental setup. A spherical gold nanoparticle (100 nm diameter) mounted
on a nanofiber (410 nm diameter) which is positioned in the small gap (∼ 200 µm) between
two half sphere lenses (5 mm diameter). The opening between this two lenses is filled with
index matching fluid of the same refractive index as the fiber and the lenses. The two lenses are
mounted on four syringe needles, which are attached to mirror mounts and translation stages to
provide a perfect alignment of the lenses with respect to each other. From the left a vertically
linearly polarized beam almost parallel to the x-axis is aligned onto the nanoparticle, such that
it does not pass the edge of the back half sphere lens or the surface of the index matching fluid.
This beam passes the surface of the half sphere perpendicular and therefore its polarization is
conserved. It polarizes the nanoparticle linearly along the vertical y-axis. Consequently images
taken of the particle in this polarization state with the imaging system placed along the z-axis
reveal the particle’s real position. Therefore this beam is addressed as reference beam. Addi-
tionally there is a beam aligned onto the nanoparticle coming in from the top which is initially
linearly polarized along the optical axis of the imaging system (z-axis). This beam is tilted by
about 7◦ towards the imaging system to pass the front half sphere lens perpendicular through
its surface. Via a half and a quarter wave plate it is possible to adjust any desired elliptical po-
larization for that beam and consequently for the nanoparticle. This beam is used to measure
the apparent displacement of the particle as a function of the illuminating polarization and is
therefore addressed as polarizing beam.
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the particle in the center we are not subject to reflections that would result in an anisotropic
emission. Since the nanoparticle is placed in the center of this glass sphere it can be imaged
from the outside without any distortions and any illuminating beam aligned onto the particle
coming from the outside passes the surface of the glass sphere perpendicular and its polarization
is therefore not changed. Using now an illumination beam which propagates perpendicular to
the optical axis, the nanoparticle can be illuminated with a wide set of polarization states. Note
that this setup is similar to that of a standard immersion microscope commonly used in high
precision microscopy.

Although the glass sphere does not distort the particle’s image, it still needs to be taken
into account when determining the magnification in the images of the nanoparticle inside the
sphere. Therefore the front half sphere lens is conceptually included in the new overall imaging
system. Also due to the refractive index the wavelength of the used laser is different inside the
index matching fluid than in free space, which needs to be considered when determining the
theoretical displacement. A closer description of the central parts of the setup will be given in
the next sections.

4.1.1 Half sphere lenses alignment and illumination beams

In order to mount the half sphere lenses with a maximum of optical access, they are attached to
syringe needles with uv-curing adhesive.1 At the front lens that faces the microscope objective
the needles are placed on the side and on the back lens more in the middle of the lens, as shown
in Figure 4.1. Each pair of needles is fixed on two small mirror mounts such that the lenses can
be tilted with respect to the x- and y-axis. Thereby they can be precisely aligned to each other
such that their plane facets facing each other are parallel. The nanoparticle - half sphere lens
system is imaged with the microscope described in section 3.3.1.2. The alignment of the half
sphere lenses is done by using the microscope to determine the distance between the two facets
at different points at the edges. Therefore the standard microscope is moved in z-direction with
a motorized translation stage from the point where the edge of one lens is in focus to the point
where the edge of the other lens is in focus. With the help of the motorized translation stage this
distance can be measured very precisely. Both mirror mounts holding the lenses are attached to
the same motorized three axes translation stage. In addition the back lens can be moved in the
xy-plane with manual translation stages and in z-direction with a motorized translation stage.
In this way, it is possible to align the parallel facets of the lenses also in the xy-plane and to
adjust the size of the gap as well as its position with respect to the nanofiber. All this alignment
was done before a fiber was mounted in the setup. In order to prepare a single nanoparticle
for imaging we deposit the particle on a nanofiber using the process discussed in section 3.2.2.
This deposition is monitored with the microscope, while the half sphere lens pair is placed well
below the fiber not to disturb the deposition process. After the nanoparticle is deposited on the
fiber the lens system is moved upwards with the motorized translation stage. The fiber fits into
the gap (∼ 3 mm) between the lenses. All the further alignment now is done via motorized
translation stages, since they provide a much higher accuracy. The front lens is moved close
towards the fiber until the distance of the fiber and the lens is reduced to about 100 µm. Then

1This is also used to fix nanofibers on their holders.
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the lens system is aligned such that it is centerd around then nanoparticle. For this purpose the
nanoparticle is illuminated via the fiber and imaged through the front lens. After this alignment
the index matching fluid is applied to the facet of the back lens, which is then slowly moved
towards the front lens. This needs to be done very slowly in order to prevent the index matching
fluid from being squeezed out between the two lenses and spilling on the front lens, which would
change the spherical surface of the lens into some irregular surface through which the particle
cannot be imaged properly. In this process the gap between the two lenses was reduced to about
200 µm. Several trials showed that this process does not destroy the usually fragile nanofiber.

Until the index matching fluid is in contact with the nanofiber the particle can be easily illu-
minated by the fiber and therefore be observed. An illumination of the particle on the fiber with
a free space beam is not possible unless the angle between the laser beam and the fiber is small.
Otherwise reflections from the fiber are much brighter than the particle itself. When the index
matching fluid comes in contact with the fiber, the light is no longer guided in the fiber and the
particle cannot be illuminated via the fiber any longer. In order to still illuminate the nanoparti-
cle two pre aligned free space laser beams from the outside are used. After applying the index
matching fluid both beams as well as the focus need to be slightly adjusted to illuminate and
observe the particle. This process has to be done very carefully since it features the possibility
to lose track of the nanoparticle. The whole setup is placed in a flowbox to keep it clean. It
needs to be turned off during measurements, because the flow of air causes the nanofiber to vi-
brate orthogonal to its roll axis. This vibration is damped by the index matching fluid, but not
totally suppressed. When finally aligning the reference and polarizing beam and the focus of the
imaging system this characteristic vibration is very helpful to identify the nanoparticle. In case
the nanoparticle is not proper illuminated and is out of focus it is very difficult to separate it from
the motionless background. The characteristic movement due to the vibration of the fiber when
the flow box is turned on makes it much easier to identify the particle and align the illumination
beams.

The laser beams used to illuminate the nanoparticle from the outside almost coincide with
the x- and y-axis, but are slightly tilted with respect to these axes. The tilt prevents the beams
from passing the edge or trough the gap between the lenses where the index matching fluid
could modify the propagation direction and initial polarization of the beams, since there they
would pass surfaces which are not orthogonal to their propagation direction. Instead they pass
through the surface of the lenses. A horizontal beam which is linearly polarized along the y-
axis is used to excite the nanoparticle with a polarization which is orthogonal to the optical axis
in order to measure its real position, see Figure 4.1. This beam is called the reference beam.
With a second beam which is tilted from the y-axis towards the imaging system by about 7◦ it is
possible to illuminate the particle with different elliptical polarization states. This beam is called
the polarizing beam. The polarization of this initially linearly polarized beam is controlled with
a half and a quarter wave plate. The polarization alignment procedure is presented in section
4.1.4.

For all the measurements which were done with this setup, a single nanoparticle - nanofiber
sample was used with a fiber diameter of 410 nm and a nanoparticle diameter of 100 nm. Figure
3.5b shows the corresponding absorption spectra. The used laser to illuminate the nanoparticle
had a wavelength of 685 nm.
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4.1.2 Imaging system and magnification

The overall imaging system of the setup consists of the standard optical microscope which was
already introduced in the previous experimental setup 3.3.1.2 and the half sphere lens made of
fused silica in front of the nanoparticle. For the experiments described in the following two
objectives were used with the same magnification but different NA. The first was the already
mentioned Mitutoyo objective (20X Mitutoyo Plan Apo SL Infinity-Corrected Objective) with
NA = 0.28, the second one (20X Mitutoyo Plan Apo Infinity Corrected Long WD Objective)
has NA = 0.42, a working distance of 20 mm and an effective focal length of 10 mm. Due to
the refractive index of the half sphere lens n = 1.458, the effective numerical aperture of the
overall imaging systems is increased to NAeff = 0.41 for the first objective and to NAeff = 0.61
for the second objective. The magnifications of the standard microscopes without the immersion
half sphere lens were determined with the help of a surface topography standard containing a
periodic pattern of elevated squares with a side length of (19.99±3) µm per square. To evaluate
the magnification we used the data of 14 consecutive squares and obtained M0.28 = 14.8 and
M0.41 = 13.6.2

To determine the magnification of the overall imaging system we approximate the standard
optical microscope by a single lens with a focal length of 10 mm. From the distance the opti-
cal standard microscope needs to be moved in order to get a focused image of the nanoparticle
respectively the facet of the front half sphere lens, which is 101 µm, the distance between the
nanoparticle and the facet of the half sphere lens could be determined to be 68 µm. This calcula-
tion was done using ray transfer matrix analysis [123]. Knowing this distance the magnification
of the overall imaging systems could be evaluated toM0.41 = 21.9±0.1 andM0.61 = 20.0±0.1.
A more detailed discussion of the determination of the magnification is presented in appendix
A.11.

4.1.3 Flat field correction

In digital imaging it is common to perform a so called flat field correction [124–126]. This cor-
rection compensates for different efficiencies and dark counts of the single pixels in a CCD chip.
Thereby many sources of undesirable effects like shadowing effects from dust in the imaging
system, or reflections which can lead to a variation of single pixel efficiency are neutralized. To
perform the flat field correction an image without any illuminating light, a so called darkframe,
and an image of a homogeneous illuminated plane surface is needed. From the dark frame the
dark counts of the pixels are determined and from the homogeneous illuminated image the pixel
efficiencies. In principle such a flat field correction can be done arbitrarily sophisticated, like
measuring the pixel efficiencies with respect to the wavelength of the collected light.

To be able to perform a flat field correction on the taken data we averaged over several
darkframes and took several homogeneous illuminated images using a diffuser which was illu-
minated with a white light source. Before averaging over these images we checked that there is
no global gradient in the measured photon numbers.

2In the following we denote the magnification of the different imaging systems with the corresponding NA as
index.
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4.1.4 Polarization alignment and data acquisition sequence

Figure 4.2: Polarization alignment of the polarizing beam. A laser beam which is aligned
almost vertically passes a half and a quarter wave plate and a polarizer before its power is
measured by a photo diode.The photo diode is used to align the optical axis of the wave plates
to the transmission axis of the polarization filter.

The alignment of the polarization of the reference beam was simply done by placing a linear
polarizer into the beam path in front of a photo diode. This polarizer is aligned such that the
transmitted light is linearly polarized along the z-axis, other polarizations are filtered. The
reference beam is out-coupled from one of the output fibers of the illumination setup presented
in section 3.3.1.3. Using the Berek compensator of the illumination setup, it is very easy to align
the polarization of the reference beam by minimizing the power measured with the photo diode,
resulting in a linear polarization of the reference beam along the y-axis.

Aligning the polarization of the polarizing beam is more complex. The basic idea is to have
the beam initially linearly polarized along the z-axis and then going through a half and a quarter
wave plate to control its final polarization, see Figure 4.2. Thereby, the linear polarization is
rotated by the half wave plate and then made elliptical by the quarter wave plate. In order
to realize this it is required to align the initial polarization and the optical axes of the wave
plates. Therefore, the particle is imaged and with the Berek compensator from the illumination
setup the polarization is adjusted such that the number of photons in the image of the particle
is at a minimum. This adjustment is performed without the wave plates implemented in the
polarization setup. In this configuration the polarization of the beam is parallel to the optical
axis. Now a polarizer and a photo diode are brought into the beam path. The polarization
filter is aligned with its transmission axis oriented along the x-axis by minimizing the signal
from the photo diode. Then the half wave plate is positioned in the beam path, in front of the
polarization filter. It is mounted in a motorized rotation mount and its optical axis is aligned

58



4.2. Experimental results

such that the signal on the photo diode is still minimized. The same procedure is performed for
the quarter wave plate which is inserted between the half wave plate and the polarization filter.
Both linear polarizations, parallel and orthogonal to the optical axis of the imaging system are
not changed by the quarter wave plate. When the half wave plate is rotated by 45◦ the initial
linear polarization parallel to the optical axis is rotated by 90◦ and is then orthogonal to the
optical axis. Correspondingly, the polarization after the quarter wave plate is with the rotation
of the half wave plate going from linear and parallel to the optical axis, to elliptical with its
major axis parallel to the optical axis, to circular, to elliptical with its major axis orthogonal to
the optical axis, and ends up being linear and orthogonal to the optical axis. This means that
the polarization ratio ε of the polarizing beam passes trough all values between∞ and 0. When
rotating the quarter wave plate again by 45◦ ε evolves back from 0 to−∞. When the polarization
alignment is completed the polarizer and the photo diode are removed.

In this experiment we also performed measurements at different focal positions. For this
purpose the focus of the imaging system is scanned by moving the standard optical microscope
along the optical axis with a piezo for 20 µm with a stepsize of 1.25 µm. To compensate for
slow drifts of our experimental setup and imaging system, we alternatingly take images with
the reference and the polarizing beam. For every relative focus position and polarization state
25 sets of images are taken, where one set contains an image in which the nanoparticle was
illuminated with the polarizing beam and one with the reference beam. In this way, we get an
average real and apparent position together with the apparent displacement as well as an estimate
for the errors of the position measurement.

4.2 Experimental results

4.2.1 Focus determination

In order to find the focus of the imaging system we used the same method as in the precious
experiment by scanning the relative focal position and choosing the one which features the
highest local intensity. As a measure of the local intensity we used the photon number per
pixel on the CCD chip of the camera. The corresponding data is plotted in Figure 4.3a, where
every data point is averaged over 925 images. In the following the shown error bars correspond
to the standard error of the mean value of the measured quantities, given by σ/

√
N , where σ is

the standard deviation of the measured quantities and N the number of measurements.
To measure the position of the nanoparticle a two dimensional Gaussian function with el-

liptical contour was fitted to the images. The main axes of the contour ellipse are fixed on the
x- and y-axis. A more detailed description and discussion of the data analysis is given section
4.3. In Figure 4.3b the two waists of the elliptical Gaussian fit, where σx(σy) denotes the waist
along the x(y)-axis, obtained from the reference images on the CCD chip is plotted with respect
to the relative focal position. The horizontal dashed lines give the waist which was obtained by
the simulation of the images. These simulations were performed using the parameters of the
imaging systems involved in the particular setup taking into account the 7◦ tilt of the polarizing
beam. While the experimentally obtained waist at the focus of 15.3 µm agrees very well with
the calculated value of 14.9 µm for the imaging system with the effective aperture NAeff = 0.41
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Figure 4.3: Focus determination. a, The photon number at the brightest pixel used as a mea-
sure for the local intensity in the image of the nanoparticle, plotted as a function of the relative
focal position. The blue (yellow) curve shows the data measured with the imaging system with
NAeff = 0.41 while the nanoparticle was illuminated with the reference (polarization) beam and
the green (red) curve shows the data measured with the imaging system with NAeff = 0.61 while
the nanoparticle was illuminated with the reference (polarization) beam. The fact that the maxi-
mum of the measured photon numbers have different values stems from the different powers of
the reference and polarizing beam. The focus is defined as the relative focal position with the
highest local intensity. The grey highlighted area indicates the data in the focal region which
was used for further analysis, which also applies for the next subfigure. b The waist of the ref-
erence images at the CCD chip of the camera fitted with a two dimensional elliptical Gaussian
plotted as a function of the relative focal position. For the imaging system with NAeff = 0.41
the waist along the x(y)-axis is shown as blue disks (squares) and for the imaging system with
NAeff = 0.61 the waist along the x(y)-axis is shown as yellow disks (squares). The blue (yel-
low) dashed line indicates the theoretically obtained waist in the focus using the parameters of
the imaging system with NAeff = 0.41 (NAeff = 0.61).

the experimental obtained value of 14.6 µm is in comparison to the simulated value of 9.2 µm
noticeably higher for the imaging system with NAeff = 0.61. This mismatch might stem from
small aberrations in the high NA imaging system. Nevertheless, the overall good agreement
of the measured waists in comparison to the calculated ones shows a good performance of the
imaging system and does not indicate any alarming aberrations. One can observe that the waist
is like in the previously presented experiment almost constant for a wide range of relative focal
positions and cannot be used to define a precise focus. Additionally the rapid increase of the
waist due to ring structures in the point spread function for large negative relative focal positions
can be observed.

4.2.2 Main results

The main purpose of this experiment was to measure the apparent displacement of a nanoparticle
as a function of its polarization state. This is realized by rotating the half wave plate, which is
assigned to adjust the polarization of the polarizing beam (see 4.1.4) from its initial position by
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90◦ in 2.5◦ steps. Thereby we scan trough 37 polarization states, i.e. 37 values of ε between
−∞ and∞ from which 34 values of ε lie in the interval [−6, 6]. For every polarization state and
every relative focal position 50 images are taken alternatingly illuminated with the polarizing
and the reference beam. Consequently we can determine the apparently displaced position of
the nanoparticle with respect to its real position in successively taken images. This rules out any
short term drifts. In order to keep the impact of shot-to-shot noise small, we averaged the appar-
ent displacement over the 125 measurements taken in the focus region, which involves beside
the focus the four relative focal positions closest to the focus. The focus region is highlighted in
grey in Figure 4.3

The corresponding data, obtained from the five datasets in the focus region, is plotted in
Figure 4.4a for the setup with NAeff = 0.41 and in Figure 4.4b for the setup with NAeff =
0.61. The solid curves show the displacement obtained from a simulated measurement. The
dashed coloured curves show the displacement of the center of mass according to expression
2.51. Note that the corresponding theoretical model does not take the tilt of the polarizing
beam into account. For |ε| 6 1 the data agrees very well with the linear approximation ∆x =
ε · λ̃/(2π), which is shown as grey dashed line. Here λ̃ = λ/n, while λ denotes the free space
wavelength of 685 nm of the laser used to illuminate the nanoparticle and n = 1.458 is the
refractive index of the index matching fluid. In the regime |ε| > 1 the center of mass prediction
shows significant deviations from the experimental data which is no need to be alarmed, since the
experimentally obtained position was obtained from a two dimensional Gaussian fit which is a
different measurement. Instead the numerical prediction using Gaussian fitting of the calculated
images using expression 2.64 agrees very well with the experimental data. These calculations
were performed using the parameters of the imaging systems involved in the particular setup
and take into account the 7◦ tilt of the polarizing beam. The maximal distance between the
apparent positions of the nanoparticle is about 0.9 · λ̃ = 423 nm, which by far exceeds the
diameter of the nanoparticle of 100 nm. For the circular polarized nanoparticle in the setup with
NA = 0.41 the measured displacement is ∆xt(ε = −1) = −76(5) and ∆x(ε = 1) = 69(4)
while the predicted values from the simulation are ∆xt(ε = ±1) = ±72 and from the center
of mass also ∆x(ε = ±1) = ±72. In the setup with NA = 0.61 the experimental obtained
displacement is ∆x(ε = −1) = −69(3) and ∆x(ε = 1) = 73(3), with the predicted values
from the simulation of ∆x(ε = ±1) = ±72 and from the center of mass of ∆x(ε = ±1) = ±69.
Within the statistical errors our experimental obtained data agrees very well with the theoretical
predictions.

Figure 4.4c shows images of the nanoparticle taken with the imaging system with NAeff =
0.41 for different dipole polarization ratios ε. These images are averaged over the data sets in the
focus, i.e. relative focal position equals zero. The white dashed ellipse indicate the measured real
position of the nanoparticle. The plotted ellipses indicate the measured apparent positions and
the major axes of the ellipse correspond to the fitted waists σx and σy. The apparent displacement
is clearly visible. While for |ε| 6 2.1 the point spread functions look nearly indistinguishable
from each other the change of the PSFs for |ε| � 1 is visible.

In Figure 4.6a the fit amplitude with respect to the dipole polarization ratio ε obtained from
the images taken with the reference and polarizing beam are plotted. The presented data are
averaged over the images in the focus region. While the fit amplitude and consequently the
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Figure 4.4: Apparent displacement measured as function of polarization. a, The measured
apparent displacement ∆x (blue disks) using the imaging system with NAeff = 0.41 plotted as a
function of the dipole polarization ratio ε. The solid blue line indicates the numerical displace-
ment obtained from fitting the calculated images taking the tilt of the polarizing beam into ac-
count. The dashed blue curve shows the theoretically obtained center of mass displacement (see
expression 2.51). The dark grey dashed line shows the linear approximation ∆x = ε · λ̃/(2π)
with λ̃ the wavelength of the laser inside the index matching fluid. The light vertical grey
dashed lines indicate the circular polarization state |ε| = 1 and the horizontal ones the displace-
ment ∆x = ±λ̃/(2π). b, Shows the same plot as in subfigure a for the imaging system with
NAeff = 0.61.

accumulated number of photons at the CCD chip should be constant when illuminating the
nanoparticle with the reference beam, it is dependent on the polarization when illuminating with
the polarizing beam. In addition to the fit amplitudes gained from the experimental data the
fit amplitudes gained from theoretical images of an elliptically polarized emitter are shown in
the plot. The amplitudes in the images taken with the polarizing beam agree very well with
the calculated data while the fit amplitudes in the reference images, which should be constant
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Figure 4.5: Images of elliptically polarized dipole. Images of the nanoparticle for different
values of ε. Every single image is averaged over 25 images taken for the particular polarization
state in the focus. The white crosses indicate the real position of the nanoparticle obtained
from the image with ε = 0. The white dashed ellipse indicate the measured position of the
nanoparticle and the major axes of the ellipse correspond to the waists σx and σy of the elliptical
Gaussian fit. The apparent displacement is clearly visible. While for |ε| 6 2.1 the images are
nearly indistinguishable from each other for |ε| � 1 a change in the point spread function is
visible.

Figure 4.6: Fit parameters. a, The fit amplitude for both imaging systems and both illumi-
nation beams plotted as a function of ε. The blue squares (disks) correspond to the data taken
with the imaging system with NAeff = 0.41 from images illuminated with the reference (po-
larizing) beam and the yellow squares (disks) correspond to the data taken with the imaging
system with NAeff = 0.61 from images illuminated with the reference (polarization) beam. The
dashed blue (yellow) curve shows the fit amplitude of the calculated images for NAeff = 0.41
(NAeff = 0.61). The data obtained from the images illuminated with the polarizing beams agrees
very well with the calculated data while the fit amplitude obtained from the reference images
shows a fluctuation of the power of the reference beam of about 10%. b, The ratio σx/σy from
the fitted waists plotted as a function of ε. The blue (yellow) disks correspond to the data taken
with the imaging system with NAeff = 0.41 (NAeff = 0.61) and the blue (yellow) curve shows
the calculated data. The measured data shows some deviations with respect to the calculated
data but follows in general the overall evolution of the latter.

in general, varies for about 10%. This variation is very likely caused by fluctuations of the
laser intensity. However small fluctuations of the laser intensity have no impact on the position
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determination of the nanoparticle.
The ratio σx/σy of the two waists of the images in which the nanoparticle was illuminated

with the polarizing beam is plotted in Figure 4.6b along with the corresponding calculated data.
The presented data is averaged over the images in the focus region. While for ε > 0 and
NAeff = 0.41 the experimental data agrees very well with the simulation, there is a discrepancy
for ε < 0 and NAeff = 0.41 and in general for NAeff = 0.61. Nevertheless the decreasing
of σx/σy with increasing |ε| follows the overall behavior of the simulation. According to the
calculation the ratio of the waists should be smaller than measured, which would make it easier
to recognize that the particle is apparently displaced. Consequently when trying to estimate the
apparent displacement from the deformation of the point spread function one would possibly
underestimate the apparent displacement of the nanoparticle in this data.

4.2.3 Defocussing errors

Figure 4.7: Apparent displacement along vertical axis due to defocussing. a, The displace-
ment ∆y as a function of the relative focal position for different values of |ε| plotted with the
corresponding linear approximations. The corresponding slopes are given in nanometer of dis-
placement per microns of defocussing. The presented data was taken with the imaging system
with NAeff = 0.41. The increase of the slopes of the linear approximations with increasing |ε|
shows the increasing anisotropy of the nanoparticle’s emission pattern. The grey highlighted
area indicates the data in the focal region which was used for further analysis. Every data point
was averaged over 25 images, which causes the statistical error to be larger than in the previous
plots. b The slope of the focus dependent displacement ∆y plotted (blue) as a function of ε.
It shows clearly the increase of the slope with increasing |ε| which could already be estimated
from the previous subfigure. Additionally the slopes of the displacement ∆x are plotted (yellow)
which is expected to feature no dependence on the relative focal position, meaning the slopes
are expected to be zero.

In the experimental setup discussed in this chapter the superposition of the light emitted by
the nanoparticle and its reflection on the nanofiber lead to an anisotropic illumination of the
aperture and thus to a strong dependence of the apparent displacement on the relative focal posi-
tion. The new setup was designed to minimize this effect. While for ε = 0 the emission pattern
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of the nanoparticle should indeed be isotropic across the aperture, it starts getting anisotropic
when increasing |ε|. This stems from the increasing amplitude of the dipole oscillating along the
optical axis. Since this oscillation axis is tilted by 7◦ it features an anisotropic emission across
the aperture. However this anisotropy is along the y-axis and should therefore not influence
the apparent displacement ∆x but introduce an additional apparent displacement ∆y along the
y-axis which depends on the relative focal position and the polarization. In particular it should
depend on the absolute value of ε, since the anisotropy of the emission does not depend on the
sign of ε.

For the datasets obtained from the experimental setup with NAeff = 0.41 the evolution of ∆y
is plotted in Figure 4.7a with respect to the relative focal position for different values of |ε|. Note
that the statistical error in this plot is quite high, since in comparison to the data presented e.g.
in Figure 4.4 only 50 images are averaged for every data point. Additionally like in the previous
chapter the nanoparticle drifts stronger in y direction than in x direction, since it is mounted
on a horizontally oriented nanofiber. The solid lines show linear fits to the corresponding data
sets. One can see that increasing anisotropy of the emission of the nanoparticle with growing
|ε| results in an increasing of the slope of the apparent displacement ∆y. For ε = 0 the slope
is not zero as expected, but still small, which originates potentially from the finite precision
of the polarization alignment of the reference and the polarizing beam. If the polarization of
the reference beam is not aligned perfectly linearly along the y-axis, but slightly tilted towards
the imaging system this would cause a dependency of the y position of the nanoparticle in the
reference images on the relative focal position. This would then directly influence the apparent
y position of the elliptically polarized particle, since this position is measured with respect to
the assumed real position.

Figure 4.7b shows the slope of the focus dependent displacement ∆y as a function of the
polarization of the particle. In addition, also the slopes of the linear approximation of the ap-
parent displacement along the x-axis are plotted. While the slopes of ∆y increase with growing
|ε| the slopes of ∆x are mainly constant and small. In an ideal aberration free optical imaging
system the displacement ∆y is zero at the focus. This condition could in principle be used to
define the focus of the imaging system. Averaging over all the positions where the displacement
∆y(ε) intersects the x-axis gives a value of −1.1 µm, which indicates the the focus position we
defined in section 4.2.1 is in good agreement with the focus one would obtain when defining it
via the requirement that ∆y = 0.

Figure 4.8a shows the displacement ∆x plotted as a function of the relative focal position
z for different values of ε for the data taken with the setup with NA = 0.41. Only for the
highest value of |ε| a clear change of ∆x with respect to the relative focal position is visible.
Still this change is very small compared to the mean value of the corresponding displacement.
In order to see, if the relative focal position effects the polarization dependent position shift of
the nanoparticle, we analyzed the apparent displacement ∆x for the two relative focal positions
−5.0 µm and 4.2 µm, see Figure 4.8b and c. The experimental data is in good agreement with the
simulation which shoes that the effect studied in this thesis is independent from the relative focal
position. Additionally, it shows that the requirement on this setup to minimize any dependence
on the relative focal position of ∆x was achievable within the precision of the polarization and
beam alignment.
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Figure 4.8: Apparent displacement along horizontal axis due to defocussing. a, The dis-
placement ∆x plotted as a function of the relative focal position for different values of ε with
the corresponding linear approximations. The presented data was taken with the imaging sys-
tem with NAeff = 0.41. One can see, that only for |ε| � 1 the apparent displacement shows a
a small dependence of the relative focal position and can be considered as constant otherwise.
The grey highlighted area indicates the focal region. b and c, The apparent displacement plotted
as a function of ε for the data taken at the relative focal positions −5 µm and 4.2 µm. Both
plots show a good agreement with the calculated displacement (solid line) and underline that the
apparent displacement is not dependent on the relative vocal position.

Figure 4.9 shows the focus dependent displacements ∆y and ∆x for the imaging system
with NAeff = 0.61 for several values of |ε|, plotted as a function of the relative focal position
z. In comparison to the data presented from the setup with the smaller NA (see Figure 4.7a)
the slopes of ∆y for small |ε| are higher, specially the slope of ∆y for ε = 0 is twice as high
as for the previous presented data. This might stem from the fact that the higher NA collects a
bigger part of the anisotropic emission pattern or the anisotropy was increased, caused by a not
so well performed polarization alignment. Averaging these data over all the positions where the
displacement ∆y(ε) intersects the x-axis gives a value of 1.5 µm which agrees very well with
the chosen focus.
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Figure 4.9: Apparent displacement due to defocussing. a, The displacement ∆y plotted as a
function of the relative focal position for different values of |ε| including the corresponding lin-
ear approximations. The presented data was taken with the imaging system with NAeff = 0.61.
The slopes for the first three values of |ε| are noticeably higher than in the previous experiment
with the smaller NA which might stem from the higher NA. The grey highlighted area indicates
the focal region, which also applies for the next subfigure. b, The displacement ∆x plotted as
a function of the relative focal position for different values of ε with the corresponding linear
approximations. In contrast to the same data presented for the lower NA experiment here the ap-
parent displacement depends on the relative focal position, specially for large |ε|. This behavior
indicates an overall anisotropic emission of the nanoparticle which likely stems from imperfect
alignment of the particle’s polarization.

For the displacement along the x-axis we observe in contrast to the same plot for the data
taken with the small NA a clear dependence of ∆x on the relative focal position. When only
considering the cases ε = ±2.1 and ε = ±5.7 the slopes have the same sign and approximately
the same value which indicates that this behavior could stem from a dependence of the reference
position on the relative focal position. This would directly impact the measured apparent posi-
tion. Such an effect could appear when the reference beam is not perfectly linearly polarized
along the y-axis, which would lead to an anisotropic illumination of the aperture and thus to
an apparent shift of the particles position in the reference images. Although this might play a
role in the presented data it cannot explain the behavior of the evolution of ∆x for the other
polarization states. Hence it is likely that not only the polarization of the reference beam is not
perfectly aligned but also the polarization of the polarizing beam. Any possible misalignment
does not influence the data taken with the lower NA setup, since the polarization alignment, see
section 4.1.4, was redone in between the both measurements.

Summarizing the presented data shows a strong dependence of the apparent position of an
emitter on its polarization state. The measured displacement from the real position is even larger
than the theoretical predictions derived for the center of mass (2.51). Furthermore, the measured
displacement fits very well to the values obtained from a calculation that takes the Gaussian
fitting into account to obtain the apparent position of the particle. While a clear dependence of
the apparent displacement of the aperture as indicated by the center of mass displacement, it
could not be observed. But the calculations of the displacement including the Gaussian fitting
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show, that in this position determination process the aperture does not play such a prominent role
in the regime of the apertures we used. Besides the apparent displacement along the x-axis an
apparent displacement along the y-axis was observed that depends on the relative focal position
and originates from an intrinsic polarization dependent anisotropic emission of the nanoparticle
caused by the tilt of the polarizing beam. In contrast to the experimental setup presented in
the previous chapter we could show that this setup is in principle capable to show an apparent
displacement (∆x) which does not depend on the relative focal position. In summary, when
comparing the size of the used nanoparticle to the highest measured displacements, which are
close to the wavelength, it can be said, that the nanoparticle is clearly seen at a position where it
is not.

4.3 Data analysis

There exist several methods which could be used to determine the position of the nanoparti-
cle from the image data. Center of mass determination, cross correlation [87] and fitting of a
theoretically or experimentally obtained point spread function [127] as well as fitting two di-
mensional Gaussian functions are commonly used to identify the position of a sub-wavelength
diameter emitter. In order to check if these methods have an influence on the polarization de-
pendent position shift we used two such methods: fitting a Gaussian function to the image data
and using the experimentally obtained point spread function. In the first part of this section we
discuss the results of the Gaussian fitting procedure.

To measure the position of the nanoparticle we fit a two dimensional elliptical Gaussian
function to the image data, which is one of the most common methods. The fit function is given
by

G2D(x, y) = A · e
−2

(
(x−x0)

2

σ2x
+

(y−y0)
2

σ2y

)
+O, (4.1)

where the fit parameters (x0, y0) give the centroid of the Gaussian function, i.e. are associated
with the position of the nanoparticle,A is the amplitude andO a global offset. From section 2.2.4
we know that the images taken within the presented experimental setups should approximately
be elliptically symmetric with the main axis aligned along the x- and y-axis, see Figure 2.8.
Consequently we did not implement an arbitrary orientation of the elliptical two dimensional
Gaussian function in the xy-plane, but restricted the major axes to the x- and y-axis. The waist
of the Gaussian function along the x- and y-axis is given by σx and σy.

Considering the basic idea of the presented experiments fitting a Gaussian function is con-
sidered to be an appropriate method [128] to obtain the position of the nanoparticle. Moreover it
is commonly used to determine the position of nanoparticles in the super-resolution regime [98],
involving also more advanced methods [129]. In principal the accuracy of the Gaussian fit is
only limited by the signal to noise ratio of the given image [65,130]. Therefore, Gaussian fitting
is widely used for position estimation not only in microscopy, but also for instance in astronomy,
and there are attempts to further improve its performance [131, 132].

In order to check that the particular Gaussian fit function does not introduce any bias on
the measured positions, we compared the results obtained with the already mentioned fitting
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Figure 4.10: Gaussian fitting. a, The apparent displacement measured with the imaging system
with NAeff = 0.41 plotted as a function of ε. The corresponding data was analyzed with an
elliptical Gaussian fit with offset (blue disks), an elliptical Gaussian fit without offset (yellow
disks), a circular Gaussian fit without offset (green disks) and a circular Gaussian fit with fixed
waist obtained from the reference images (red disks). b, The deviation of the mentioned fitting
functions with respect to the elliptical Gaussian fit with offset plotted as a function of ε. In
general this deviation is in far the sub-nanometer regime and therefore much smaller than the
statistical errors. Specially for |ε| < 2 the deviation is negligible.

function 4.1 to three different Gaussian based fitting functions which are:

G2D(x, y)|O=0 (4.2)

G2D(x, y)|O=0,σx=σy=σ (4.3)

G2D(x, y)|O=0,σx=σy=σ0 . (4.4)

Here, the function 4.2 is similar to 4.1 but without a global offset. The other two expressions
describe a two dimensional Gaussian with circular contour. While in 4.3 the waist σ is a fit
parameter we used in 4.4 the fixed waist σ0 which was obtained from the set of focused reference
images. The deviation between the different fitting functions lies within the sub-nanometer
regime and is therefore, in general, smaller than the statistical error of the measured positions,
see Figure 4.10. Thus no relevant error is introduced by the particular used fitting function.

4.3.1 Experimental point spread function fitting

Additional to the position determination by fitting a Gaussian function we also investigated if
position estimation using a fit of the experimentally obtained point spread function gives rise to a
different apparent displacement. This analysis was performed following the methods presented
in [127]. The basic idea of this fitting process is to stepwise scan a test image of the theoretical or
experimentally obtained PSF over the experimentally obtained image. For each relative position
of the fit image and the experimentally obtained image, the sum of squares of the differences
over all pixels is calculated. Searching the minimum of this sum then yields the best match of
the two images and is associated with the emitters position, which is then given with respect to a
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Figure 4.11: Determining the experimental point spread function. a, First guess of the PSF
by averaging over several reference images which are aligned to each other with respect to the
brightest pixel. b, Discrete Fourier transform of the first guess of the PSF (a). Due to the
alias effect the low spatial frequency components reappear in the other edges of the image. c,
Interpolation of the PSF by adding data points with value zero in the Fourier transform along the
region of the effective highest frequencies. In this particular case the overall number of pixels
is increased by a factor of four. The interpolation process is done under the assumption that
the image of the PSF is not subject to fast modulations on the order of next neighbor pixels. d,
Interpolated image by calculating the inverse Fourier transform, which now features twice the
resolution as the initial PSF. e, Experimentally obtained PSF of the linearly along the y-axis
polarized dipole, imaged with the optical setup with NAeff = 0.41. The number of pixels was
increased by a factor of 24 which now provides a resolution of 10 nm (in the object plane) for
the fitting process.

global reference of the CCD chip. A more detailed description of such a fitting process is given
in chapter 5. While in principal the used PSF could be taken from a theoretical model of the
imaging system and emitter in general the PSF is not known a priori due to unknown aberrations,
and not analytically reproducible. In such a chase it can be determined experimentally.

We applied this position measurement for the setup NAeff = 0.41. To generate the image of a
PSF which could be used to measure the position of the nanoparticle we made a first guess of the
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unknown PSF by averaging over a set of reference images, which were taken in the focus region.
Before averaging over all this images they were aligned with respect to each other such that the
brightest pixels are at the same position. The resulting image is shown in Figure 4.11a. This
test image is a two dimensional array which we now call PSF0.3 The resolution of the position
measurement using PSF0 is given by the pixel size of the CCD chip, since this is the smallest
step size with which PSF0 can be scanned over images in the position determination process.
This leads to a stepsize in the object plane of 5.3 µm/M0.41 = 242 nm, which is by far too big to
accurately measure the apparent displacement. To gain a higher resolution in this fitting process
the reference image PSF0 is interpolated. Therefore the discrete Fourier transform of PSFF0 is
calculated, see Figure 4.11b. The discrete Fourier transform is given by

(PSFF0 )kl =
1√
N

N∑
m,n

(PSF0)nme
2πi(m−1)(n−1)

(k−1)(l−1)
N , (4.5)

where N is the number of pixels per side length of the quadratic two dimensional array PSF0

and n and m denote the pixel position in the image in line n and column m. The amplitude
(PSFF0 )kl corresponds to a spacial frequency of (k− 1)/N in x- and (l− 1)/N in y-direction.
In Figure 4.11b one can see that subfigure 4.11a seems to be composed of low and high frequency
parts. While the lower frequency are given by n/N with n � N the higher frequency can be
written as n/N = 1 − ñ/N with ñ � N . When sampling a signal with a sampling frequency
which is less than half of the signal frequency the so called alias effect [133] appears. Due to
this effect a signal of frequency 1 − ñ/N with ñ < N/2 cannot be distinguished from a signal
with a much smaller frequency of about ñ/N . Therefore, the effective highest spatial frequency
which can be identified from the image is approximately 0.5. Making use of the assumption that
the yet unknown PSF should not be subject to fast modulations (on the size of next neighbor
pixels in the image) we can now generate an interpolated image. For this purpose we insert data
points with the value zero to the array PSFF0 along the regions in the center that correspond
to the highest frequencies, see Figure 4.11c. Calculating then the inverse Fourier transform,
see 4.11d, we obtain an interpolated image. We call this interpolated data set PSF int0 . When
increasing the overall number of data points in the Fourier transform by a factor of four in the
interpolation process, one ends up with twice the number of pixels along the x- and y-axis in the
interpolated PSF image and has consequently gained a factor 2 higher resolution. Now we can
fit the interpolated guess of the PSF to the individual and also interpolated images which were
initially used to create PSFF0 , which gives us a better estimation of the positions on a subpixel
level for the centroid of these images. The already interpolated images can then be averaged
to a better approximated image of the real PSF by reorganizing the images such that the just
measured positions of the centroids coincide. Since the number of pixels has increased due to
the interpolation the images can be aligned with respect to each other more accurately than it was
possible in first place. We call this new guess of the image of the point spread function PSF1.

3Note that the term point spread function is in general used to describe to continuous intensity distribution gen-
erated by a lens system in the imaging process in the image plane. Sometimes its also used to describe the theoretical
image array this intensity distribution causes when measured theoretically with CCD screen. In the framework of
this thesis we refer to the first definition of the PSF. However, in the following the experimentally obtained images of
the PSF and the determined interpolated images will also be addressed as PSF (italic).
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Using PSF1, the positions of the centroids of all interpolated reference images can again be
determined and then a new test image PSF2 can be generated, in the same way as PSF1 was
obtained. This iterative process is done until PSFi = PSFi+1 ≡ PFSfit, meaning until this
process converges. Figure 4.11d shows the PSFfit that was obtained using this process for an
interpolation which doubles the resolution.

Using the experimentally obtained image PSFfit of the point spread function of a linearly
polarized dipole (ε = 0), the position of the nanoparticle in all images taken with the experi-
mental setup with NAeff = 0.41 can be measured. Therefore the point spread function PSFfit is
fitted to all images taken in the measurements.

Figure 4.12: Comparison of Gaussian and PSF fit. a, The apparent displacement ∆x plotted
as a function of ε where the blue (yellow) half disks correspond to the Gaussian (experimental
PSF) fit. Within the statistical errors both fitting procedures provide the same results. The
vertical dashed lines indicate the circular polarization state ε = ±1 and the dashed horizontal
lines indicate the corresponding displacement ∆x = λ/(2π). b The difference of the measured
apparent displacement of both fitting methods plotted as a function of ε.

In order to gain a precision of 10 nm in the position measurement one of the original images
pixel had to be interpolated by 24 subpixels. The resulting PSFfit is shown in 4.11e. While the
fitting of a two dimensional Gaussian function is in general done very quickly the experimental
PSF fitting is very time consuming. The determination of PFSfit, and the following fitting
process took about one week to be computed. If this runtime could be reduced by an order of
magnitude by using more sophisticated algorithms and parallelizing them it would still take half
a day to compute the apparent displacements for the whole data set. In contrast, the Gaussian
fitting was done on the fly while taking the data, and was redone afterwards to compare different
Gaussian based fitting functions, which took less than one hour.

Figure 4.12a shows the apparent displacement ∆x determined with the experimental PSF fit
as a function of the dipole polarization ratio ε and for comparison the corresponding apparent
displacement determined with the Gaussian fit. The analyzed data set is the same as in section
4.2.2. The apparent displacements obtained with both methods agree very well and overlap
within the corresponding statistical errors. In Figure 4.12b the deviation, i.e. the difference of
the measured apparent displacement of both position measurements is shown. It is of the same
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form as the deviation of the circular Gaussian fit with fixed waist from the elliptical Gaussian
fit as shown in Figure 4.10c (green dataset). Therefore, it is likely that the dependence of the
deviation on ε stems from the deformation of the point spread function.

Summarizing we can conclude that within our experimental errors there is no relevant dif-
ference if the position determination of the nanoparticle is done with a Gaussian fit, or with the
experimental PSF fit.

Fitting the experimentally obtained image of the PSF, which we derived from images of a
linearly polarized dipole, to the images of an elliptically polarized dipole introduces for obvious
reasons a systematic error. From section 2.2.4 it is known that an elliptically polarized dipole
features a different PSF than a linearly polarized one, see Figure 2.8. In the next chapter we
discuss in more detail the limits of position estimation when one also includes the dependence
of the point spread function on the polarization in the fitting process.
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CHAPTER 5
Consequences of spin-orbit interaction

in super-resolution microscopy

This chapter focuses on a discussion of the impact of the polarization dependent displacement
presented in this work on optical super-resolution microscopy. Appendix A.13 gives a brief
introduction to other error sources in super-resolution microscopy. As already pointed out in
section 2.2.4 the apparent displacement of an elliptically polarized emitter is accompanied by a
distortion of the point spread function (PSF).1 This distortion can in principal be used to measure
the particles polarization and apparent position at the same time. With this knowledge one can
compensate for the apparent shift. In this chapter we investigate the signal to noise limited
position accuracy of such a measurement.

Parallel to the evolution of super-resolution microscopy a lot of work has been done to find
localisation limits in position measurements. Within the related publications there exist different
approaches how to model the imaged intensity distributions of the considered emitters and how
to define a precision limit. Some of the studies feature numerical methods while others are
done analytically, or in both ways. There are several publications directly related to the method
presented in this work via least square fits, also known as sum of squared or absolute difference,
see [65, 66, 87, 130, 134, 135]. Although the precise definition of the precision limit may differ
within this studies, the major outcomes are very similar and are qualitatively comparable to the
precision limit defined in this chapter.

One major approach to define a precision limit involves a least square fit using a theoretically
obtained PSF. With this fit the position of an emitter in an image containing noise is measured.
It is possible that due to noise the measured position does not coincide with the real position of
the emitter. An important quantity in this process is the variance of the position measurement,
which is used to define a precision limit dependent on the noise.

1When light of an emitter passes a lens system and is imaged onto a screen the intensity distribution on the
screen is determined by the imaging system and the emission properties of the emitter. An imaging system can
feature aberrations which modify the intensity distribution in the image plane. The point spread function is a noise
free image of that intensity distribution.
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Additionally in digital imaging the resolution of a CCD chip which is used to take images
has influence on the precision of position measurements [65, 66, 130]. Therefore we will also
investigate how the image resolution influences the precision limit.

5.1 A precision limit in position determination of elliptically
polarized emitters

We now define two precision limits for position measurements of a dipole emitter. One for
the case that the polarization state of the emitter is known, where only the position needs to be
measured, and one for the case the polarization state of the emitter is unknown. Then the position
and the polarization state needs to be measured from the image. The noise limited accuracy
of the measurement of the polarization state of an emitter leads to an additional uncertainty in
position, caused by the polarization uncertainty, which in turn leads to an apparent displacement.

In the derivation of the precision limits we assume elliptically polarized emitters (as defined
in 2.2.1) with real valued ε only. For the imaging process we assume an imaging system which
is perfectly focussed and aberration free. The optical axis of the imaging system coincides with
the y-axis. The image obtained from an elliptically polarized emitter in the assumed imaging
system is given by the intensity distribution 2.64. We restrict the quantitative measure of the
precision limits to the x-axis, since in thus particular situation the apparent shift of the emitter
takes place along this axis.

Digital images consist of data sets which feature an array of measured values like photon
numbers or measured power. Every such value is assigned to a position in the image. In partic-
ular it is not assigned to a point-like position but to a small area which is usually referred to as
pixel, which has a certain shape and size.2 As the precision limit is dependent on the pixel size
(PS) and the size of the PSF in the image plane we assume in the following calculations, that
these parameters are chosen to provide a minimum precision limit. The influence of PS and the
size of the PSF on the precision limit are investigated in section 5.2.

In order to obtain from the function describing the intensity distribution of the imaged dipole
emitters an image array, the intensity functions are integrated over the area of single pixels.3 This
mimics the situation how an image is taken with a CCD chip. We denote in the following an
image as a set n = {n1, n2, ..., nP }, where ni gives the photon number at pixel i. The total
number of photons in an the image n is given by N =

∑P
i=1 ni, where P is the total number

of pixels in the image. Note that in the following calculations the position of the single pixels
in the image is not of importance, therefore it is sufficient to address the single pixels of the
image only by a single number. Since we limited the possible elliptical polarization states of the
imaged emitter such that it can only cause an apparent shift along the x-axis, we only consider
the situation where the emitter is placed along the x-axis. The real position of the emitter along

2In the following we assume an array of quadratic pixels in which every pixel measures the number of incoming
photons.

3To obtain from the intensity integrated over the are of a pixel a photon number the measured power needs to
be divided by ~ω an multiplied by the exposure time of the imaging system. Since this is a constant factor it will be
neglected in the following derivations and the integrated intensity is treated as photon numbers.
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5.1. A precision limit in position determination of elliptically polarized emitters

the x-axis is given by δx. Such an emitter is then characterized by the two parameters (δx, ε)
with the resulting image n(δx, ε).

5.1.1 Sum of squared difference - a measure to compare images

To compare two images we use the sum of squared difference of the images, which is given by

S(n,m) =
1

N2

P∑
i=1

(ni −mi)
2 , (5.1)

where
∑P

i=1 ni =
∑P

i=1mi = N . This sum is normalized on the total photon number of the im-
ages. We now consider a realistic imaging situation where one tires to find the unknown position
and polarization state (δx, ε) of an emitter from its image ñ(δx, ε), which contains noise.4 The
position and polarization state of the of the imaged emitter are measured by minimizing the out-
come of S(ñ,m(δx, ε)) by varying the position δx and polarization state ε of the reference image
m(δx, ε). This reference image is defined by the PSF of the imaged emitter. In the absence of
noise the parameters (δx, ε) are perfectly identified by (δx, ε) for S(n(δx, ε),m(δx, ε)) = 0.

The noise dependent precision limit will be derived from the function S. This is done using
the noise dependent expectation value 〈S〉 and the variance Var(S) of S as a function of N , ε
and the real displacement δx. In the process of deriving 〈S〉 and Var(S) we need to study two
special cases of the function S. We start with

S0(δx, ε, ε0) =
1

N2

P∑
i=1

(ni(0, ε0)−mi(δx, ε))
2 . (5.2)

This function compares the image n(0, ε0) of an emitter in polarization state ε0 placed at the ori-
gin with the test imagem(δx, ε) of an emitter in polarization state ε placed at the position δx·ex.
Both images are assumed to not contain noise. The special function Slin

0 (δx, ε) = S0(δx, ε, 0)
is plotted in Figure 5.1a. The zoom of the center region of this plot is shown in Figure 5.1b.
There it can be seen that Slin

0 (δx, ε) has a elongated minimum along εδx = −δx 2π/λ which
stems from the effect that a real displacement δx is cancelled by the apparent displacement
∆x = εδx · λ/(2π) = −δx.5 This shows that the image of an elliptically polarized emitter
which is suitable displaced can be very similar to the one of the solely linearly polarized emit-
ter at the origin. Still Slin

0 gives a small but nonzero value due to the small deformation of the
PSF stemming from the elliptical polarization. Therefore, there exists a continuous set of highly
correlated parameters (δx, ε) that creates images nearly indistinguishable from the image of the
linearly polarized dipole located at the origin.

The image arrays used to determine the data shown in Figure 5.1 were obtained by integrat-
ing the intensity distribution 2.64 over the area of single pixels with the pixel size PS.6 The
pixel size is PS = 0.7 · FWHM, where FWHM denotes the full width half maximum of the

4In the following images which are considered to contain noise are marked with a tilde.
5In the following εδx denotes the polarization of an emitter which counters the real displacement δx
6While the intensity distribution in 2.64 is given for an emitter located at the origin here the real displacement

needs to be taken into account.
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intensity distribution of a linearly polarized emitter (ε = 0). This pixel size provides the highest
precision in position measurements when imaging a linearly polarized emitter (see section 5.2).
The overall number of pixels per image is P = 121. The side length of an image is then about
one order of magnitude larger than the FWHM of the image and consequently covers therefore
most of the image information. This values apply to all images in section 5.1 which are used to
determine any specific values.

For vanishing pixel size PS the function S0 results in an integral over the area of the image.
Instead of the squared difference of the power measured at certain pixels the squared difference
of the intensity functions is directly integrated. For small real displacement δx� 1 the squared
difference of the intensity distributions can be approximated with a Taylor series:

(I(0, ε)− I(δx, ε))2 = a δx2 (5.3)(
I(0, 0)− I(δx,−δx2π

λ
)

)2

= b δx4, (5.4)

where I(δx, ε) gives the intensity distribution in the image of an dipole emitter in polariza-
tion state ε at position δx ex. Figure 5.1c shows the same data as subfigure a and b, but here
Slin

0 (δx, ε) is evaluated along the line ε = 0 (blue points - dotted grey line in subfigure b) and
ε = εδx (yellow points - dashed grey line in subfigure b). The value of Slin

0 increases quadrat-
ically with δx when comparing images of linearly polarized emitters and goes with the fourth
power of δx when comparing the image of a linearly polarized emitter with the image of an
emitter which is elliptically polarized such that the apparent shift cancels the real shift. Hence
the approximations of S0 for δx� 1 is also for non vanishing pixel sizes valid, as it can be seen
in the plot. The factors a and b were determined by fitting the corresponding approximations to
the data, providing the fit parameters a = 0.033 and b = 0.009. This figure nicely illustrates
that it is easier to distinguish with the help of S0 a linearly polarized emitter at the origin from
a linearly polarized one which is slightly displaced than from an displaced emitter which is el-
liptically polarized in such a way that the apparent displacement cancels the real displacement.
This fact is crucial when considering imaging with noise.

In Figure 5.2a the fit parameter a is plotted as a function of ε. It was obtained by fitting the
approximation a δx2 to the data obtained by S0(δx, ε) for different values of ε. The fit parameter
rises for ε = 1 to its global maxima slightly above the value for ε = 0 and decreases then for
increasing ε.
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Figure 5.1: Sum of squared difference. a, Two dimensional plot of Slin
0 (δx, ε). The lower

x-axis represents the real displacement δx normalized to the wavelength λ and the NA and the
left y-axis represents ε normalized to the NA. The upper x-axis and right y-axis correspond
to the setup presented in chapter 4, with λ = 470nm and NA= 0.28. Note that the this NA
was introduced as a geometrical NA in 2.2.4. b, A zoom of the center region of subplot a.
There an elongated minimum for εδx = −δx · 2π/λ can be seen. Along this minimum the real
displacement δx is cancelled by the apparent displacement ∆x = εδx · λ/(2π) = −δx. Still
the outcome of Slin

0 is nonzero due to the distortion of the point spread function caused by the
elliptical polarization. c, Slin

0 evaluated along ε = 0 (dotted grey line in b) as blue dots and along
εδx (dashed grey line in b) as yellow dots. For small δx the function Slin

0 can be approximated
by Slin

0 (δx, ε) ≈ a · δx2 for ε = 0 and Slin
0 (δx, ε) ≈ b · δx4 for εδx. The corresponding fitted

parameters are a = 0.033 and b = 0.009. This approximations are plotted as solid blue and
yellow lines. The number of photons N used to generate this plots is 106.
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5.1.2 Comparing noisy images

We now consider experimentally taken images containing noise. For this we limit the following
discussion to the case where the images are dominated by photon shot noise [136], since this is
the most fundamental noise source. Therefore it is of major importance in high precision imag-
ing. To study the impact of this noise on the position determination we derive the expectation
value and the variance of S. This will be performed in two steps. Before deriving the expectation
value and the variance of S it will be derived for the function

Sid(δx, ε) =
1

N2

P∑
i=1

(ni(δx, ε)− ñi(δx, ε))2 , (5.5)

which gives a measure to compare the perfect noiseless image n of an emitter with a noisy image
ñ of the same emitter. Due to the photon shot noise, the number of photons collected at a pixel
follows a Poisson distribution. The expectation value of the photon number counted at a pixel
is given by [137] 〈ñi〉 = ni. The higher momenta of the Poisson distribution can be written
as polynomials, where the moment of grade k is given by the kth complete exponential Bell
polynomial [137],

〈
ñki
〉

= Bk(ni, · · · , ni). In the following calculations the first four momenta
of ñi will be used:

〈ñi〉 = B1(ni) = ni (5.6)〈
ñ2
i

〉
= B2(ni, ni) = ni + n2

i (5.7)〈
ñ3
i

〉
= B3(ni, ni, ni) = ni + 3n2

i + n3
i (5.8)〈

ñ4
i

〉
= B4(ni, ni, ni, ni) = ni + 7n2

i + 6n3
i + n4

i . (5.9)

Therefore the expectation value of Sid can be derived to

〈Sid〉 =
1

N2

〈
P∑
i=1

(ni − ñi)2

〉

=
1

N2

P∑
i=1

〈
(ni − ñi)2

〉
=

1

N2

P∑
i=1

(
n2
i − 2ni 〈ñi〉+

〈
ñ2
i

〉)
=

1

N
. (5.10)

This means that the difference Sid between an noisy image and its noiseless equivalent decreases
with 1/N . For infinite integration time the image containing noise becomes an image of the PSF
given by the imaging system. In the same way the expectation value of Sid has been calculated,
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its variance can be determined from Var(Sid) =
〈
S2

id

〉
− 〈Sid〉2:

〈
S2

id
〉

=

〈(
1

N2

P∑
i=1

(ni − ñi)2

)2〉

=
1

N4

〈
P∑

i,j=1

(ni − ñi)2 · (nj − ñj)2

〉

=
1

N4

〈
P∑
i=1

(ni − ñi)4

〉
+

1

N4

〈
P∑
i 6=j

(ni − ñi)2(nj − ñj)2

〉
. (5.11)

With the usage of the first four momenta of ñi, the first part of 5.11 simplifies to〈
P∑
i=1

(ni − ñi)4

〉
= N + 3

P∑
i=1

n2
i . (5.12)

Assuming that the noise on the pixels i and j is not correlated, the second part of the expression
5.11 can be derived to

P∑
i 6=j

〈
(ni − ñi)2

〉 〈
(nj − ñj)2

〉
= N2 −

P∑
i=1

n2
i . (5.13)

Therefore the variance of Sid is given by

Var(Sid) =
1

N4

(
N + 3

P∑
i=1

n2
i +N2 −

P∑
i=1

n2
i −N2

)

=
1

N3
+

2

N2

P∑
i=1

(ni
N

)2
. (5.14)

It is useful to make the following definition:

B :=

(∑P
i=1 n

2
i

N2

)−1

. (5.15)

Here B−1 is the square of the image normalized by N2. The highest possible value for B is the
number of pixels P for ni = N/P and the lowest value is 1 in case all light is detected only
with one single pixel. B can be understood as the number of bright pixels in an image.7

In any relevant imaging process B is much smaller than the overall number of collected
photons. Therefore the variance of Sid is dominated by the 1/N2 expression and we make the
approximation

Var(Sid) =
2

N2B
for B � N. (5.16)
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Figure 5.2: Fit parameter and number of bright pixels. a, The fit parameter a plotted for
different values of ε. It was obtained by fitting the approximation S0 = a δx2 to the data
obtained by S0. b, The number of bright pixels B plotted for different values of ε. In the image
of an emitter which is linearly polarized along an axis orthogonal to the optical axis (ε = 0) the
number of bright pixels is approximately 6. In the case of an emitter which is linearly polarized
along the optical axis (ε � 1), where the image is given by a ring, the number of bright pixels
is increases to about 16.

Figure 5.2b shows the parameter B plotted as a function of ε. For the case of linearly polarized
emitter B ≈ 6 and rises with increasing ε to a value of about 16.

Now that we derived the expectation value and the variance of Sid we do the same for the
general function S, which compares a measured image containing noise to the image of a any
theoretical PSF. Therefore we rewrite S to

S(ñ,m) =
1

N2

P∑
i=1

(ñi −mi)
2 =

1

N2

P∑
i=1

(ni + n̂i −mi)
2, (5.17)

where m is the the image of theoretical fit PSF. Here ñ is the experimentally obtained image
with noise and n is the noise free image of the PSF that corresponds to the emitter of which
the image ñ was taken. The noise measured on pixel i is given by n̂i = ñi − ni. Again, when
deriving the expectation value and variance of S we require the first four momenta of n̂:

〈n̂i〉 = 〈ñi − ni〉 = 0 (5.18)〈
n̂2
i

〉
=
〈
(ñi − ni)2

〉
= ni (5.19)〈

n̂3
i

〉
= 〈(ñi − ni)3〉 = −ni (5.20)〈

n̂4
i

〉
=
〈
(ñi − ni)4

〉
= ni + 3n2

i . (5.21)

7In a flat image where ni is either a constant value or zero B corresponds to the number of illuminated pixels.
In typical imaging conditions most of the light is distributed over a small number of pixels compared to the overall
number of pixels in an image. Hence B can be understood as the number of pixels with large photon numbers.
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Using this momenta the expectation value of S can be written as

〈S〉 =
1

N2

〈
P∑
i=1

(ni + n̂i −mi)
2

〉

=
1

N2

P∑
i=1

(
n2
i +

〈
n̂2
i

〉
+m2

i + 2ni 〈n̂i〉 − 2nimi − 2 〈n̂i〉mi

)
=

1

N2

(
N +

P∑
i=1

(ni −mi)
2

)
. (5.22)

The sum
∑

(ni −mi)
2/N2 can be identified as the function S0 (5.2) comparing the two noise-

less images n and m. It is the comparison of the noise free part of ñ with the test image m.
Consequently, the expectation value

〈S〉 =
1

N
+ S0 = 〈Sid〉+ S0, (5.23)

is given by the sum of the expectation value of Sid, which represents the comparison of the noisy
image ñ with the image n of the corresponding theoretical PSF, and the value S0. This means
that including photon shot noise into the imaging process adds an offset 1/N to the average
outcome of the function S0.

To derive the variance of S we first start with the evaluation of
〈
S2
〉
:

〈
S2
〉

=

〈(
1

N2

P∑
i=1

(ni + n̂i −mi)
2

)2〉

=
1

N4

〈
P∑
i=1

(ni + n̂i −mi)
4

〉
+

1

N4

〈
P∑
i 6=j

(ni + n̂i −mi)
2(nj + n̂j −mj)

2

〉
.

(5.24)

Using (ni −mi)/N =
√

(S0)i
8 the first part of expression 5.24 can be written as

〈
P∑
i=1

(
√

(S0)iN + n̂i)
4

〉
= N +

P∑
i=1

(
3n2

i − 4ni
√

(S0)iN + 6n(S0)iN
2 + (S0)2

iN
4
)
,

(5.25)

while the second part of expression 5.24, assuming again that the noise measured at pixel i and

8(S0)i = (ni −mi)
2
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j is not correlated, can be written as

P∑
i 6=j

(
ni +N2(S0)i)

) (
nj +N2(S0)j

)
=
(
N +N2S0

)2 − P∑
i

(
n2
i + 2ni(S0)i + (S0)2

i

)
=N4 〈S〉2 −

P∑
i

(
n2
i + 2ni(S0)i + (S0)2

i

)
. (5.26)

Therefore we can now derive the variance of S to

Var(S) =
〈
S2
〉
− 〈S〉2

=
1

N4

(
N +

P∑
i

(
2n2

i + 4ni(S0)iN
2 − 4ni

√
(S0)iN

))

= Var(Sn) + 4
P∑
i

(
1

N2
ni(S0)i −

1

N3
ni
√

(S0)i

)
. (5.27)

For m = n the expectation value and variance of S reduces to the values 〈S(ñ, n)〉 = 〈Sid〉 and
Var (S(ñ, n)) = Var(Sid). In the following we make the assumption, that the overall number of
collected photons is much larger than the number of bright pixels B � N , and, that the number
of bright pixels is much smaller than the number of pixels P � B. This assumptions agree with
common experimental results in microscopy imaging. Using

P∑
i=1

√
(S0)i ≥

√√√√ P∑
i=1

(S0)i (5.28)

we can now make a upper estimation for the variance of S:

Var(S) .
1

N3
+

2

N2B
+ 4

P∑
i=1

(
NS0

N2B
− N

√
S0

N3B

)
=

1

N3
+

2

N2B
+ 4

(
S0

N
−
√
S0

N2

)
. (5.29)

For N � B, the term 1/N3 can be neglected. We can rewrite
√
S0 =

√
a δx for δx � 1.

Assuming δx is in the nanometer regime the term
√
S0/N

2 can be neglected with respect to
2/(N2B). With this assumptions the variance of S is given by

Var(S) =
2

N2B
+ 4

S0

N
. (5.30)
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5.1.3 The precision limit

We now want to establish a precision limit i.e. the expected position uncertainty in a position
measurement for a given photon number N . To define the precision limit we use the expectation
value and the variance of the comparing functions S and Sid. The function Sid compares a
noisy image ñ with an image n of the corresponding theoretical PSF, while S compares the
experimental image ñ with the image m of a theoretical PSF. In Figure 5.3 the expectation value
〈S(ñ,m(δx, ε))〉 is plotted (solid curves) as a function of δx for ε = 0 (subfigure a) and εδx =
−δx 2π/λ (subfigure b). At δx = 0 the expectation values in this plots are given by 〈Sid〉 =
1/N . In addition to the expectation value the standard deviation σS =

√
Var(S) is shown

in both subfigures. In particular the boarders of the one σS interval [〈S〉 − σS , 〈S〉+ σS ] are
plotted (dashed lines) as a function of δx. These plots were generated using the approximations
5.3 and 5.4 of S0 with a = 0.033 and b = 0.009. These values were obtained from fits to
S0 using images with a number of bright pixels B ∈ [6, 16] and an overall number of pixels
per image of P = 121. The used number of photons was N = 106. This parameters suit
the assumptions made to obtain the variance of S as given in 5.30 where it was assumed that
N � B and B � P .

We now define the precision limit Dx as the position at which

〈S(Dx)〉 − σS(Dx) = 〈Sid〉+ σSid . (5.31)

The precision limit Dx corresponds to the real displacement for which the value of the lower
boarder of the one σS interval rises above the value of the upper boarder of the one σSid interval.
This intersections of 〈S〉 − σS with 〈Sid〉 + σSid are highlighted in Figure 5.3 as red circles.
The precision limit shown in subfigure a, which corresponds to the case that we have prior
knowledge, that the imaged emitter is in the polarization state ε = 0, is about one order of
magnitude smaller than the precision limit in subfigure b. There the situation corresponds to the
case were we have no prior knowledge of the polarization state of the emitter.9

From

〈S(Dx)〉 − σS(Dx) = 〈Sid〉+ σSid (5.32)

1

N
+ S0(Dx)−

√
2

N2B
+ 4

S0

N
=

1

N
+

√
2

N2B
, (5.33)

we can derive analytic expressions for Dx for the case that the polarization state of the imaged
emitter is known

Dxnp =

2
(

2 +
√

2
B(ε)

)
a(ε) N


1
2

(5.34)

9At this point one might ask why one should use the PSF of an emitter in polarization state ε = 0 to fit the
position of an emitter of unknown polarization. This is a suitable choice assuming the imaged emitters are only
slightly elliptically polarized (ε� 1). For different imaging scenarios one could adapt the definition of the precision
limit or extend the derivation of the precision limit to even more general cases.
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Figure 5.3: Definition of the precision limit. a, The expectation value 〈S (ñ,m(δx, ε = 0))〉
plotted as solid line versus the real displacement δx normalized on the wavelength λ and the nu-
merical aperture NA. This corresponds to the case where the imaged emitter is linearly polarized
orthogonal to the optical axis. The dashed blue lines indicate the boarder of the one σS interval
[〈S〉 − σS , 〈S〉+ σS ] (grey area). The precision limit (red dots) is defined as the δx for which
the lower boarder of the one sigma interval around S rises above the upper boarder of the one
sigma interval at δx = 0, which is indicated by the grey dashed horizontal lines. The photon
number N of the images used to create this plot is 106. The upper x-axis corresponds to δx
for the experimental setup presented in chapter 4, with λ = 470nm and NA= 0.28 b, The same
plot for the expectation value

〈
S
(
ñk,m(δx, εδx = −δx · 2π/λ)

)〉
. This corresponds to the case

where we assume to have no prior knowledge of the emitters polarization. The corresponding
precision limit is about one order of magnitude larger than the one for a solely linearly polarized
dipole.

using the approximation S0(δx) = a(ε) δx2 for δx � 1 and for the case of an emitter with
unknown polarization state

Dxup =

2
(

2 +
√

2
B

)
b N


1
4

(5.35)

using S0(δx) = b δx4.10 When evaluating the precision limit Dxnp(ε) for different values of
a(ε) and B(ε) one finds that the smallest precision limit appears when imaging an emitter which
is circularly polarized (ε = ±1). This precision limit is about 5% smaller than the one in the
imaging process of linearly polarized emitters, which is a very interesting finding. However,
since the difference is so small and it is more common to assume linearly polarized emitters in
high resolution imaging we restrict the discussion in the following to Dxnp(ε = 0)

10Note that a has the unit length squared and b length to fourth power.
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Figure 5.4: Precision limit. The precision limits Dxnp(ε = 0) and Dxup for position measure-
ments resulting from photon shot noise plotted as a function of the total photon number N . The
left y-axis corresponds to Dx normalized to the wavelength λ emitted by the imaged dipole and
the numerical aperture NA of the imaging system. The right y-axis corresponds to Dx for the
experimental setup presented in chapter 4, with λ = 470nm and NA= 0.28. The upper x-axis
corresponds to the polarization uncertaintyDε normalized by the NA, which needs to be present
in order to cause the apparent displacement which leads in turn to the precision decrease. It can
also be understood as the necessary elliptical polarizability of the imaged emitters, which they
need to feature in order to cause the corresponding apparent shift. The precision increases much
faster with respect to N for a linearly polarized emitter than it does for one with unknown polar-
ization. Therefore the latter requires orders of magnitude larger photon numbers, i.e. exposure
time to gain the same precision, which is indicated by the horizontal dashed lines. The decrease
in precision between the case of a linearly polarized dipole and the case of a dipole of unknown
polarization is indicated with the vertical dashed lines for two photon numbers.

The precision limits Dxnp(ε = 0) and Dxup are plotted in Figure 5.4 as a function of the
photon number N . Over the whole range of the plot the precision limit for the imaging process
where the polarization of the emitter is unknown is approximately one to three orders of mag-
nitude larger than for the case where the polarization state of the imaged emitter is known. It is
still possible to gain the same precision when imaging an emitter of unknown polarization state
by increasing the photon integration time in the imaging process. However it requires within the
data shown in the plot at least two orders of magnitude longer integration time.
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For instance when imaging an emitter with NA = 1 at a wavelength of about 628 nm the
precision given by Dxnp(ε = 0) is 1 nm for a total photon number N = 106. For the same
parameters Dxup gives a precision of approximately 15 nm. To gain the same precision as in the
case of the emitter with known polarization state the overall number of measured photons needs
to be increased by a factor 4 · 104, which directly links to the measurement time. Alternatively
one needs to know the polarization uncertainty better than Dε = 0.01 which corresponds to
an polarization overlap with linear polarization better than η = 1/(1 + Dε2) = 99.99%. The
polarization overlap η is determined via

η =

∣∣∣∣EDx ·
1√

1 + ε2
(EDx + i · ε · EDy)

∣∣∣∣2 =
1

1 + ε2
. (5.36)

Summing up, this section shows that even in perfect imaging systems, which only feature
photon shot noise as an error source, the uncertainty of the outcome of a position measurement
is strongly dependent on the presence of longitudinal field components (with respect to the
optical axis) in the light field emitted by the imaged emitter. With the presented estimation
of the precision limit it can be seen that for similar experimental situations the position error
is orders of magnitude smaller for the case where the polarization state of the emitter is known
with respect the case where it is not. This is a very important finding. To compensate for
this effect one has either to increase the measurement time by several orders of magnitude in
combination with the use of a more complex fitting algorithm or obtain very precise knowledge
of the polarization state of the imaged emitters. In appendix A.12 the possible presence of local
elliptically polarization of the illuminating light in microscopy setups is briefly discussed. While
the presented method to compare two images might considered to be not optimal it is commonly
used. More sophisticated algorithms should on one hand provide in general a higher precision,
but we expect them to show a similar discrepancy for the two cases of known and unknown
polarization of the emitter. The derivation of the precision limit can be easily generalized to two
dimensions, which will lead to similar findings.

5.2 Optimal pixel size

As mentioned in in the beginning of this chapter, the achievable precision in a given imaging
setup is dependent on the pixel size PS. In general there exists an optimal pixel size which pro-
vides the highest precision in position measurements, depending on the imaging setup, imaged
emitter and localization method. Related results can be found in [130] and [66]. In particular the
pixel size depends on the PSF of the used imaging system.11 We focus on the case of an emitter
which is linearly polarized along an axis orthogonal to the optical axis (ε = 0). The intensity
distribution of such an emitter in the image plane is rotationally symmetric. A suitable quantity

11We assume in the following that the emitter is smaller than the diffraction limit.
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to describe such a PSF is the full width half maximum FWHM approximately given by12

FWHM = 3.23 · λ/(2π) ·M/NA. (5.37)

In the following we study the precision limits given in the previous section with respect to ratio
PS/FWHM.

We do this with the same assumptions concerning the imaged emitters and the imaging
process as in section 5.1. The precision limits presented in equation 5.34 and 5.35 are dependent
on the overall number of photons N , the number of bright pixels B in the image’s PSF and on
the values a(ε = 0) and b from the approximations 5.3 and 5.4. The values B, a and b are
dependent on the ratio PS/FWHM. Figure 5.5a shows how a and b change with PS/FWHM.
They do not reach their maximum at the same pixel size. This means that the optimal pixel
size to gain the smallest precision limit is for linearly polarized emitters different than for the
measurement of the position of an emitter with unknown polarization. The evolution of B with
respect to PS/FWHM is shown in Figure 5.5b. For PS/FWHM < 1 it is proportional to 1/PS2

since the area in the image plane, which exhibits large intensities is constant. This area is given
by B · PS2.

The resulting consequence for the precision limits is shown in Figure 5.5c, where Dxnp(ε =
0) and Dxup are plotted in blue and yellow as a function of PS/FWHM. This is done using the
numerical obtained values of a, b and B. For a linearly polarized emitter (ε = 0) the highest
precision can be reached for PS/FWHM ≈ 0.7, which means that the FWHM is about 1.4
pixels wide. In the case of an emitter with unknown polarization state the highest precision is
reached for PS/FWHM ≈ 1.2, but the precision limit changes only slowly near its minima.
When imaging emitters of unknown polarization state with the optimal pixel size for linearly
polarized ones the precision is only decreased by about 15%.

This study shows that it is useful and necessary to adapt in digital imaging the CCD screen
to the PSF of the imaging system when doing high precision position measurements. While it
is quite intuitive that large pixel sizes limit the accuracy of position measurements, since in the
limiting case all light is measured at only one pixel, the fact that to small pixel sizes decrease
the precision limit might not be commonly known.

12Note that this FWHM can not be perfectly converted to the waist of the measured images in chapter 3 and
4 since the waist there was measured using a Gaussian fit. The PSFs studied in this chapter can not be perfectly
approximated by a two dimensional Gaussian function. Therefore there is a small difference between the FWHM of
a Gaussian and the FWHM given here.

89



5. CONSEQUENCES OF SPIN-ORBIT INTERACTION IN SUPER-RESOLUTION MICROSCOPY

Figure 5.5: Optimal pixel size. a, The fit parameters a and b obtained by fitting the approxima-
tions 5.3 and 5.4 to the data given by the comparing function S0. They are plotted versus the ratio
PS/FWHM. b, The number of bright pixels B, as defined in 5.15 plotted versus PS/FWHM.
For PS/FWHM < 1 it is proportional to 1/PS2 since the area featuring the highest intensities in
the image is constant and is given by B · PS2. For PS/FWHM > 1 it approaches 1. For large
pixel sizes the strongly illuminated area in the image plane is then covert by one pixel only. c,
The precision limits Dxnp(ε = 0) (blue) and Dxup (yellow) plotted versus the ratio PS/FWHM.
The plot shows that the ratio PS/FWHM ≈ 0.7 provides the highest precision when determin-
ing the position of a linearly polarized dipole. In contrast the highest precision for an emitter
of unknown polarization state is reached for PS/FWHM ≈ 1.2. When imaging emitters of un-
known polarization with the optimal pixel size for linearly polarized ones the precision is only
decreased by about 15%. The two precision limits are normalized byDxnp/(

√
2/Nλ/(2πNA))

and Dxup/( 4
√

2/Nλ/(2πNA)).
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CHAPTER 6
Summary and Outlook

6.1 Summary

In this thesis I investigated spin-orbit interaction of light in a free-space setting and showed that
it can cause in an optical imaging process a displacement of the emitter’s image. This in return
leads to the assumption that the emitter is at a position where it is actually not. The resulting
apparent displacement is determined by the presence of linear transverse momentum from which
an analytic expression for the apparent displacement can be derived. Studying the displacement
as a function of the polarization of the imaged emitter reveals that in the case of small numer-
ical aperture of the imaging system, a circularly polarized emitter appears to be displaced by
λ/(2π). Compared to the current commonly reached precisions in position measurements in
super-resolution microscopy this is already a large deviation from the actual position. Further-
more, it is possible to enhance the apparent displacement to exceed the optical wavelength by
preparing the imaged emitter in a highly elliptical polarization state. For vanishing aperture it
can even by arbitrarily large. A major finding of this theoretical study is that even in a perfectly
focussed aberration free imaging system the centroid of the image of a nanoscale emitter does
in general not correspond to the emitters position.

The apparent displacement of a single gold nanoparticle was measured in two related but dif-
ferent experimental setups. In both experiments good agreement with the theoretical predictions
was observed and an overall displacement of about one optical wavelength measured, which
exceeds four times the particle’s diameter. The particle was clearly seen at a position where it
was in fact not.

Since the apparent displacement is usually in the order of the optical wavelength I also
studied its possible effect on the signal to noise limited position accuracies in super-resolution
microscopy. I defined precision limits for the two situations with and without prior knowledge of
the imaged emitter’s polarization. Considering only fundamental photon shot noise the position
of an emitter of known polarization can be determined orders of magnitude more precise than for
an emitter of unknown polarization. One can compensate for this effect by extending the photon
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integration time in the imaging process. However, the exposure time needs to be increased by
several orders of magnitude which can be challenging in an realistic imaging process.

6.2 Outlook

The presented apparent displacement introduces a new source of possible errors in super-reso-
lution microscopy, which pushed optical imaging to the nanoscale [52]. While some of the used
novel methods can in principle not be subject to the apparent displacement presented in this
work, like STED [62], other methods could possibly be exposed to this systematic error which
can exceed the established accuracies by up to two orders of magnitude [52,53]. The majority of
the emitters used in super-resolution microscopy are fluorescent molecules which are considered
to strictly feature linearly polarized transitions [138] and should therefore only emit light which
does not feature orbital angular momentum. But being immersed in a gaseous, liquid, or solid
medium causes temperature- and/or strain-induced vibrations or static distortions which possi-
bly lead to spectral overlap of transitions of different polarizations. In such an environment the
considered strictly linear polarizability should be critically challenged. So far it was not possi-
ble to find any detailed studies on the polarizability properties of these commonly used emitters.
With the publication of the effects presented in this thesis in [139] we hope to encourage corre-
sponding investigations. In order that any finite elliptical polarizability of fluorescent molecules
can lead to errors in position measurements the presence of elliptical polarization at the position
of the molecule is necessary. Spurious reflection in or near an imaged sample can easily result
in local elliptically polarizations and are in general difficult to be absolutely suppressed.

Since the apparent displacement can occur for any kind of wave carrying orbital angular
momentum it is relevant beyond optical imaging. The fact that the apparent displacement can
get arbitrary large for vanishing NA is not of importance for super-resolution microscopy, since
there the low NA regime is not of interest. But it should be kept in mind for other localization
techniques like radar [140–142] or sonar imaging [143,144]. It could even influence the apparent
position of astronomical objects which are detected through their emission of gravitational waves
[145, 146].

Certainly, the polarization dependent shift of an emitters image can be used for new appli-
cations. As for example it offers useful implementations in arrays of particles, like for instance
optically trapped particle arrays [147]. There it could be applied to measure the local polar-
ization of illuminating light at the position of the particles using their apparent displacement,
assuming their real positions are precisely determined. With such a setup a polarization probe
could be realized. The other way around, when illuminating such a particle array with light of
precisely known polarization, apparent shifts in an image would provide insight to local physical
parameters which affect the polarizability or the apparent displacement of the particles. The ap-
parent displacement measured in an image of a nano-structure smaller than the diffraction limit
as a function of the polarization and wavelength of the illuminating light could reveal important
information of the spatial orientation of the nano-structure. With this method one could deter-
mine the orientation of nanorods. Furthermore, this method could be used to measure defects or
irregularities in the structure.
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APPENDIX A
Appendix

A.1 Induced resonant dipole as momentum probe

In this section we will shortly discuss what kind of particle is a suitable probe to sense the
momentum of light fields. To check if an emitter is a useful momentum probe we investigate its
behavior in the simplest electromagnetic field, a plane wave. In a plane wave the propagation
direction is obvious and at every point the same. Consequently, a test emitter onto which only
momentum is transferred from the wave needs to move in propagation that direction.

In the simplest approach one could think of a single charged particle, which we assume to
be much smaller than the wavelength of the plane wave. This particle needs to be considered
locked in place, otherwise it can not probe the mean local momentum transfer averaged over one
oscillation period of the field. The force acting on this particle vanishes when averaging over
one oscillation period of the light field, meaning it does not gain any momentum by the field.
Consequently it can not be used as a momentum probe.

The next logical approach would be to think of a dipolar particle of which the overall charge
is zero. Such a particle can be realized by a static or permanent dipole or by a induced dipole. A
static dipole can be considered as the extreme case of a far detuned induced dipole, which feels a
force parallel or anti-parallel to the field gradient. This force is called the gradient force [71,72],
which is used for instance in optical tweezers. An induced dipole which is resonant to the
exciting light field however does not feel this gradient force and is only subject to the radiation
pressure [70]. Therefore it is the proper choice as a momentum probe in a light field.

A.2 Momentum density of light fields - details

This section provides several details and mathematical proofs which were used in section 2.1.1
to determine the momentum density of light fields.

93



A. APPENDIX

A.2.1 Center of mass and relative coordinates

The positions r± of two charges ±Q with the masses m± can be expressed using the centre of
mass coordinate

R =
m+

m
r+ +

m−
m
r− (A.1)

and the relative coordinate

rd = r+ − r−, (A.2)

where m = m+ + m− denotes the overall mass of the dipole. Using this coordinates the
positions of the charges can be written as

r± =
m+ +m−
m+ +m−

r± =
m+

m
r± +

m−
m
r± +

m∓
m
r∓ −

m∓
m
r∓ =

=
(m±
m
r± +

m∓
m
r∓

)
+
m∓
m

(r± − r∓) =

= R± m±
m
rd. (A.3)

A.2.2 Vector identities I

The Jacobi matrix Jf of a vector valued function f : R3 → R3 is given by

Jf (r0) =
(
~∇⊗ f

)T
(r0) =


∂fx
∂x (r0) ∂fx

∂y (r0) ∂fx
∂z (r0)

∂fy
∂x (r0)

∂fy
∂y (r0)

∂fy
∂z (r0)

∂fz
∂x (r0) ∂fz

∂y (r0) ∂fz
∂z (r0)

 , (A.4)

where ⊗ denotes the outer product [69] and fT is the transpose of f . The expression Jf (r0)r
can be rewritten as

Jf (r0)r =


∂fx
∂x (r0) ∂fx

∂y (r0) ∂fx
∂z (r0)

∂fy
∂x (r0)

∂fy
∂y (r0)

∂fy
∂z (r0)

∂fz
∂x (r0) ∂fz

∂y (r0) ∂fz
∂z (r0)


rxry
rz

 =

=

rx
∂fx
∂x (r0) + ry

∂fx
∂y (r0) + rz

∂fx
∂z (r0)

rx
∂fy
∂x (r0) + ry

∂fy
∂y (r0) + rz

∂fy
∂z (r0)

rx
∂fz
∂x (r0) + ry

∂fz
∂y (r0) + rz

∂fz
∂z (r0)

 =

=

(
rx

∂

∂x
+ ry

∂

∂y
+ rz

∂

∂z

)fx(r0)
fy(r0)
fz(r0)

 =
(
r · ~∇

)
f(r0) (A.5)

A.2.3 Momentum absorbed by a dipole

In this section the derivation of the momentumP absorbed by a resonant Lorentz oscillator from
a light field is performed in detail. We assume the center of mass of the dipole to be spatially
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fixed at the positionR. The light field is described by the monochromatic electric and magnetic
fields

E(r, t) =
1

2
(E(r, t) +E∗(r, t)) =

1

2

(
E0(r) e−iωt +E∗0(r) eiωt

)
,

B(r, t) =
1

2
(B(r, t) +B∗(r, t)) =

1

2

(
B0(r) e−iωt +B∗0(r) eiωt

)
, (A.6)

where E∗ is the complex conjugate of E. The momentum is derived via the integral of the
overall force F0 (see 2.15), acting on the dipole, over one oscillation period of the light field1,

P (R) =

2π
ω∫

0

[ (
µ̄L · ~∇

)
E(R, t) + ˙̄µL ×B(R, t)

+ ˙̄µL ×
((
µ̄L · ~∇

)
B(R, t)

) m2
− −m2

+

Qm2

]
dt, (A.7)

where the dipole moment of the resonant Lorentz oscillator is given by [68]

µ̄L =
i

2
Im(α) (E −E∗) . (A.8)

In order to solve this integral we treat the first two terms separately from the third. To integrate
the first two terms we make use of the following identity: z − z∗ = (a + ib) − (a − ib) =
2ib = 2i Im(z), with z ∈ C and a, b ∈ R. Further more we make use of the Maxwell–Faraday
equation

~∇× E = − ∂

∂t
B, (A.9)

which we decompose to

~∇× E = (~∇×E) + (~∇×E∗) = (~∇×E0)e−iωt + (~∇×E∗0)eiωt (A.10)

and

− ∂

∂t
B = − ∂

∂t

(
B0e

−iωt +B∗0e
iωt
)

= iω
(
B0e

−iωt −B∗0eiωt
)

= iω (B −B∗) . (A.11)

Identifying the terms with the same oscillation behaviour leads to

~∇×E = iωB, (A.12)
~∇×E∗ = −iωB∗. (A.13)

1Note that P is a function of the position R and µ̄L is a function of the position R and time t. These depen-
dencies are not always mentioned in the following in order increase the readability. The same applies to the different
components of the electrical and magnetic field.
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Now we perform the integral of the first two terms of A.7:

2π
ω∫

0

[(
µ̄L · ~∇

)
E(R, t) + ˙̄µL ×B(R, t)

]
dt = (A.14)

=
i

4
Im(α)

2π
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e−2iωtdt

︸ ︷︷ ︸
=0

[(
E0 · ~∇

)
E0 −E0 ×

(
~∇×E0

)]
−

−
i

4
Im(α)

2π
ω∫

0

e+2iωtdt

︸ ︷︷ ︸
=0

[(
E∗0 · ~∇

)
E∗0 −E∗0 ×

(
~∇×E∗0

)]
−

−
i

4
Im(α)

2π
ω∫

0

dt

︸ ︷︷ ︸
= 2π
ω

[ (
E∗0 · ~∇

)
E0 −

((
E∗0 · ~∇

)
E0

)∗
+E∗0 ×

(
~∇×E0

)
−
(
E∗0 ×

(
~∇×E0

))∗ ]
=

=
π

ω
Im(α) Im

((
E∗0 · ~∇

)
E0 +E∗0 ×

(
~∇×E0

))
(A.15)

The third term of the integral A.7 can be derived to

2π
ω∫

0

˙̄µL ×
((
µ̄L · ~∇

)
B(R, t)

) (m2
− −m2

+

)
Qm2

dt =

=
1

8
Im(α)2

(
m2
− −m2

+

)
Qm2

[
h1 (E0,B0)

2π
ω∫

0

e−3iωtdt

︸ ︷︷ ︸
=0

+h2 (E0,B0)

2π
ω∫

0

e−iωtdt

︸ ︷︷ ︸
=0

+

+ h3 (E0,B0)

2π
ω∫

0

eiωtdt

︸ ︷︷ ︸
=0

+h4 (E0,B0)

2π
ω∫

0

e3iωtdt

︸ ︷︷ ︸
=0

]
= 0. (A.16)

Finally the momentum absorbed by a resonant Lorentz oscillator with fixed center of mass at a
positionR is given by

P =
π

ω
Im(α) Im

((
E∗0 · ~∇

)
E0 +E∗0 ×

(
~∇×E0

))
. (A.17)
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A.2.4 Vector identities II

This section provides a proof to the vector identity

(a · ~∇)b+ a× (~∇× b) = (~∇⊗ b) a, (A.18)

where a and b are vector valued functions with a, b : R3 → R3, where b is at least once totally
continuously differentiable and ~∇ acts only on b. The vector identity can be proofed by rewriting
it in its components:

(a · ~∇) b+ a× (~∇× b) =

=

(
ax

∂

∂x
+ ay

∂

∂y
+ az

∂

∂z

)bxby
bz

+

axay
az

×



∂
∂x

∂
∂y

∂
∂z

×
bxby
bz


 =

=


ax

∂
∂xbx + ay

∂
∂y bx + az

∂
∂z bx

ax
∂
∂xby + ay

∂
∂y by + az

∂
∂z by

ax
∂
∂xbz + ay

∂
∂y bz + az

∂
∂z bz

+


ay

∂
∂xby − ay

∂
∂y bx − az

∂
∂z bx + az

∂
∂xbz

az
∂
∂y bz − az

∂
∂z by − ax

∂
∂xby + ax

∂
∂y bx

ax
∂
∂z bx − ax

∂
∂xbz − ay

∂
∂y bz + ay

∂
∂z by

 =

=


ax

∂
∂xbx + ay

∂
∂xby + az

∂
∂xbz

ax
∂
∂y bx + ay

∂
∂y by + az

∂
∂y bz

ax
∂
∂z bx + ay

∂
∂z bz + az

∂
∂z bz

 =

=

(ax, ay, az)


∂
∂xbx

∂
∂y bx

∂
∂z bx

∂
∂xby

∂
∂y by

∂
∂z by

∂
∂xbz

∂
∂y bz

∂
∂z bz



T

=
(
aTJb

)T
=

=
(
aT (~∇⊗ b)T

)T
= (~∇⊗ b) a, (A.19)

where Jb is the Jacobi matrix of b.

A.3 Decomposition of the Poynting vector

In this section the decomposition of the Poynting vector [68] into the orbital and spin part will be
presented [75, 76]. The orbital part is proportional to the momentum density of a light field and
the spin part is proportional to the curl of the spin density. In order to identify the spin density
as part of the Poynting vector we first need to derive this vector quantity.

A.3.1 Spin density of a light field

In order to determine the spin density of a light field we start in the same way as to calculate the
momentum density in section 2.1.1, by assuming a small induced electric dipole with a charge
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Q of mass m+ at position r+ and a charge −Q of mass m− at position r−, see Figure 2.1. The
torque on this electric dipole is given by

T = r+ × F+ + r+ × Fd + r− × F− − r− × Fd, (A.20)

where F± is the sum of the Coulomb and Lorentz force acting on each charge and Fd is the bind-
ing force between the two charges. Using the center of mass and relative coordinates introduced
in section A.2.1 we can rewrite the overall torque as

T = r+ × F+ + r− × F+ + rd × Fd︸ ︷︷ ︸
=0

, (A.21)

where the last part vanishes since the binding force Fd acts parallel to the relative coordinate rd.
Since we assume the distance rd between the two charges of the dipole to be much smaller than
the wavelength of its emitted light, we can do a linear approximation to the remaining force,
as presented in section 2.1.1, see expressions 2.9 and 2.10. Using the electric dipole moment
µ = Q · rd, the torque can then be written as

T =
(
R+

m−
m
rd

)
×Q

(
E + Ṙ×B +

m−
m
ṙd ×B

)
−
(
R− m+

m
rd

)
×Q

(
E + Ṙ×B − m+

m
ṙd ×B

)
=

= Q
[
rd × E +R× (ṙd × E) + rd ×

(
Ṙ×B

)
+ rd × (ṙd ×B)

(m2
− −m2

+)

Qm2

]
=

= µ× E +R× (µ̇× E) + µ×
(
Ṙ×B

)
+ µ× (µ̇×B)

(m2
− −m2

+)

Qm2
. (A.22)

The second term in this expression is dependent on the choice of the origin of the coordinate
system and vanishes if the origin is set to be the center of mass of the dipole. This term will
therefore not be taken into account for the intrinsic torque of the dipole. The third term is
dependent on the speed of the dipole and vanishes for the case of a spatially fixed position of the
dipole. Using the dipole moment µ̄L of the resonant Lorentz oscillator (see expression 2.14) the
intrinsic torque T0 of a spatially fixed resonant dipole oscillator is given by

T0 = µ̄L × E + µ̄L ×
(

˙̄µL ×B
) (m2

− −m2
+)

Qm2
. (A.23)

Now the angular momentum L of the spatially fixed resonant driven dipole after one oscillation
period of the external light field is given by

L =

2π
ω∫

0

T0 dt

=

2π
ω∫

0

µ̄L × E dt+
(m2
− −m2

+)

Qm2

2π
ω∫

0

µ̄L ×
(

˙̄µL ×B
)
dt

︸ ︷︷ ︸
=0

, (A.24)
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where the second part vanishes2 for the same reason as in equation A.16. The intrinsic angular
momentum can now be evaluated to

L =

2π
ω∫

0

µ̄L × E dt =

=
i

4
Im(α)

[
(E0 ×E0)

2π
ω∫

0

e−2iωt dt

︸ ︷︷ ︸
=0

−(E∗0 ×E∗0)

2π
ω∫

0

e2iωt dt

︸ ︷︷ ︸
=0

− ((E∗0 ×E0)− (E∗0 ×E0)∗)︸ ︷︷ ︸
2i Im(E∗0×E0)

2π
ω∫

0

dt

︸ ︷︷ ︸
= 2π
ω

]
=

=
π

ω
Im(α) Im(E∗0 ×E0). (A.25)

From the angular momentum which is absorbed by the dipole we can determine the spin density
ρS using the absorption cross section σAbs of the Lorentz oscillator, see expression 2.19. The
spin density evaluates to

ρS =
L

λσ
=

ε0
2ω

Im(E∗0 ×E0). (A.26)

A.3.2 Orbit and spin part of the Poynting vector

We start with the time dependent Ponynting vector

S = E ×H, (A.27)

with the electric field strength

E =
1

2
(E +E∗) =

1

2

(
E0e

−iωt +E∗0e
iωt
)

(A.28)

and the magnetic field strength

H =
1

2
(H +H∗) =

1

2

(
H0e

−iωt +H∗0e
iωt
)
. (A.29)

Using H = ε0c
2B, the magnetic field strength can be rewritten as the magnetic flux density

B =
1

2
(B +B∗) =

1

2

(
B0e

−iωt +B∗0e
iωt
)
. (A.30)

2After expanding the expression all the integrands are proportional to εn iωt with n ∈ {−3, 1, 1, 3}. Every
single one of this integrals evaluates to zero.
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The time average of the Poynting vector over one oscillation period of the light field is given by

S0 =
ω

2π

2π
ω∫

0

S dt =

=
ω

8π

(
(E0 ×H0)

2π
ω∫

0

e−2iωt dt

︸ ︷︷ ︸
0

+ (E∗0 ×H∗0 )

2π
ω∫

0

e2iωt dt

︸ ︷︷ ︸
0

+2 Re (E∗0 ×H0)

2π
ω∫

0

dt

)
=

=
1

2
Re (E∗0 ×H0) =

ε0c
2

2
Re (E∗0 ×B0) . (A.31)

Using again the identity (~∇ × E0) = iωB0, which stem from the Maxwell-Faraday equation,
see A.2.3, we can rewrite the time averaged Poynting vector as

S0 =
ε0c

2

2ω
Re
(
E∗0 × (i~∇×E0)

)
=

=− ε0c
2

2ω
Im
(
E∗0 × (~∇×E0)

)
=

=
ε0c

2

2ω
Im
(

(~∇⊗E0) E∗0

)
+
ε0c

2

2ω
Im
(

(E∗0 · ~∇) E0

)
. (A.32)

Here we first used with z ∈ C and z = a + ib, with a, b ∈ R the identity Re(i · z) = Re(ia +
i2b) = Re(−b+ ia) = −b = − Im(z) and then the vector identity presented in A.2.4. We now
make use of the vector identity [69]

(b · ~∇) a− (a · ~∇) b+ a (~∇ · b)− b (~∇ · a) = ~∇× (a× b), (A.33)

where a and b are vector valued functions with a, b : R3 → R3, which are at least once totally
continuously differentiable. In the charge free space 3 the divergence of the electric field strength
is zero, leading to

~∇ · E = e−iωt ~∇ ·E0 + eiωt ~∇ ·E∗0 = 0, (A.34)

which is in general only valid if ~∇ ·E0 = ~∇ ·E∗0 = 0. With this we can make use of the vector
identity A.33 for E0 and E∗0 :

~∇× (E∗0 ×E0) =(E0 · ~∇) E∗0 − (E∗0 · ~∇) E0 +E∗0 (~∇ ·E0)︸ ︷︷ ︸
=0

−E0 (~∇ ·E∗0)︸ ︷︷ ︸
=0

=

=(E0 · ~∇) E∗0 − ((E0 · ~∇) E∗0)∗ = 2i Im((E0 · ~∇) E∗0). (A.35)

3The situation described in section 2.1.1, where we study the momentum density of the light field emitted by
a electric dipole which is much smaller than the wavelength of its emitted light, is at a distance exceeding several
wavelengths of the dipole well described by a charge free space.
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We then find

Im((E0 · ~∇) E∗0)︸ ︷︷ ︸
∈R

=− i
2
~∇× (E∗0 ×E0)︸ ︷︷ ︸

∈R

=

=− i

2

Re(~∇× (E∗0 ×E0))︸ ︷︷ ︸
needs to be 0

+i Im(~∇× (E∗0 ×E0))

 =

=
1

2
Im(~∇× (E∗0 ×E0)). (A.36)

Finally we can write the time averaged Poynting vector as

S0 =
ε0c

2

2ω
Im
(

(~∇⊗E0) E∗0

)
︸ ︷︷ ︸

SOrb
0

+
ε0c

2

2ω
Im
(
~∇× (E∗0 ×E0)

)
︸ ︷︷ ︸

SSpin
0

. (A.37)

We denote the first part as the orbital part of the Poynting vector, since is proportional to the
momentum density ρP of the light field, as it was determined in section 2.1.1,

SOrb
0 = c2 · ρP . (A.38)

The second part is called the spin part of the Poynting vector, which is proportional to the curl
of the spin density ρS of the light field,

SSpin
0 =

c2

2
· (~∇× ρS). (A.39)

A.3.3 Consistency check of momentum and spin density

Using a circularly polarized plane wave propagating along the z-axis

EPW =
1

2

(
Aε−ikz

1√
2

(ex + iey) +A∗εikz
1√
2

(ex − iey)
)
, (A.40)

we can quickly check the consistency of the determined momentum density ρP (2.20) and spin
density ρS (A.26). The momentum density of this light field is given by

ρP =
π

ω
Im(α) |A|2 k ez (A.41)

and the spin density by

ρS =
π

ω
Im(α) |A|2 ez. (A.42)

The ratio of the momentum and spin density is then in fact

‖ρP ‖
‖ρS‖

= k, (A.43)

as one would await.
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A.4 The dipole polarization ratio

It is possible to decompose the electric field of any elliptically polarized dipole, as defined in
2.2.1, into two fields emitted by two linearly polarized dipoles which feature orthogonal polar-
ization axes and which are phase shifted by π/2. The ratio of the absolute value of the amplitudes
of this two fields correspond to the principal axes of the so called polarization ellipse. If ε is real
valued, the principal axes of the polarization ellipse coincide with the x- and y-axis. Figure
A.1a shows the polarization ellipse for ε = 0.25. If ε is purely imaginary with 0 < |ε| <∞, the
corresponding dipole field is linearly polarized along an axis which does not coincide with the
x- or y axis, see Figure A.1d.

Using the further decomposition

Eell =
1

Nε
(EDx + i Re(ε)EDy − Im(ε)EDy) with Nε =

√
1 + |ε|2 (A.44)

shows, that the field of any elliptically polarized dipole given by a complex valued ε can be de-
composed into the field of an elliptically polarized dipole of which the major axes of the polar-
ization ellipse coincide with the x- and y-axis, given by (EDx + i ·Re(ε)EDy)/Nε, plus the field
of a linearly polarized dipole oscillating along the y-axes. Figure A.1b and c shows the original
polarization ellipse and the polarization ellipse of the described decomposition for two complex
values of ε. This shows that in general, when imaging an arbitrarily elliptically polarized dipole
it is possible to decompose its emitted field into a part emitted by an elliptically polarized dipole
of which the major or minor axis of the polarization ellipse coincides with the optical axis of the
imaging system, which we address as optical-axis-oriented elliptically polarized dipole, plus a
residual part caused by a linearly polarized dipole which oscillates orthogonal to the optical axis
and is π/2 phase shifted with respect to its counterpart in the optical-axis-oriented elliptically
polarized dipole.

It is shown in section 2.2.3.3 and 2.2.4.1, that when imaging an elliptically polarized emitter
with ε ∈ C along the y-axis, the apparent displacement is only caused by the field component
(EDx + i · Re(ε)EDy)/Nε, while the residual field component Im(ε)EDy/Nε decreases the
apparent displacement.

A.5 Wave fronts

In this section the wave fronts in the xy-plane of an elliptically polarized emitter, as defined in
section 2.2.1, will be derived. We make use of the fact that the light emitted by the elliptically
polarized dipole, which is rotating in the xy-plane, is in the xy-plane solely linearly polarized
(see 2.2.2). This means that the real valued local field vector has a time independent direction and
an oscillating amplitude. Within one oscillation period of the electric field the field amplitude
has two zero crossings. We now determine the the phase fronts of the amplitude oscillation. One
way to do so is to determine the paths where the field Eell = Eell + E∗ell from 2.29 is zero and
then generalizing this solutions. The paths of equal phase are given by

Rell(φ, t, ε, φ0) = Rell(φ, t, ε, φ0)

(
− sgn(ε) cos(φ)

sin(φ)

)
(A.45)
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y y

y y

Figure A.1: Dipole polarization ratio. a, The polarization ellipse of an elliptically polarized
dipole for a solely real valued dipole polarization ratio of ε = 0.25. The major (minor) axis
of the ellipse is given by 1/Nε (Re(ε)/Nε). b and c, The polarization ellipse (solid) of an
elliptically polarized dipole field for two complex valued dipole polarization ratios. Additionally
the polarization ellipse (dashed) of the elliptically polarized dipole field described by Re(ε) is
shown. It is possible to decompose the field emitted by the dipole in polarization state ε into
the field of a dipole in polarization state Re(ε) and the residual field of a linearly polarized
dipole with described by Im(ε), see next subfigure. d, For ε being solely complex valued the
polarization ellipse reduces to a line coinciding with the axis along which the corresponding
field of a linearly polarized dipole is polarized.

with

Rell(φ, t, ε, φ0) =
λ

2π

(
sgn(ε)φ0 + sgn(ε)

2π

λ
ct+ arctan

(
1

ε
tan(φ)

)
+ sgn(ε)nπ

)
(A.46)

where sgn(ε) gives the sign of ε and n ∈ N0. The parameter φ0 ∈ (0, 2π] defines the phasing
of the wave front within one oscillation period of the light field, where the cases φ0 = 0 and
φ0 = π correspond to zero amplitude and the cases φ0 = π/2 and φ0 = 3π/2 to the positive
respectively the negative amplitude maxima. To obtain a continuous curve from this expression
several cases of n and the domain of φ need to be considered and are dependent on t and φ0.

We defined the wave fronts in section 2.2.2 as the surface of which the tangential plane is in
every point orthogonal to the linear momentum density of the field. To find out if the path given
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by Rell is a wave front according to our definition we need to check if the tangent of the curve
is in every point orthogonal to the momentum density. The tangent T ofRell is given by

T =
d

dt
Rell. (A.47)

Indeed the product

T (φ, t, ε, φ0) · ρP (Rell(φ, t, ε, φ0)) = 0, (A.48)

where ρP gives the momentum density as defined in 2.20.4

While it is in general difficult to write down the path of a wave front for arbitrary t and φ0 as
a continuous curve from the origin to infinity this is much easier for the special case t = 0 and
φ0 = nφπ/2 with nφ ∈ {1, 2, 3}. The continuous wave front is then given by

R0
ell(ε, nφ) =

{
R0

ell(φ, n, nφ, ε)

(
− sgn(ε) cos(φ+ nπ

2 )
sin(φ+ nπ

2 )

) ∣∣∣∣n ∈ N0, φ ∈
(

0,
π

2

]}
∪

∪
{
R̃0

ell(φ, n, nφ, ε)

(
− sgn(ε) cos(φ− nπ

2 )
sin(φ− nπ

2 )

) ∣∣∣∣n ∈ N, n ≤ nφ, φ ∈
(

0,
π

2

]}
(A.49)

with

R0
ell(φ, n, nφ, ε) =

λ

2π

[
sgn(ε)

nφπ

2
+ arctan

(
tan(φ+ nπ

2 )

ε

)]
+

sgn(ε)

2
ip

(
n+ 1

2

)
λ

(A.50)

and

R̃0
ell(φ, n, nφ, ε) =

λ

2π

[
sgn(ε)

nφπ

2
+ arctan

(
tan(φ− nπ

2 )

ε

)]
− sgn(ε)

2
ip
(n

2

)
λ, (A.51)

where the function ip : R→ N0 gives the integer part of a real number and nφ ∈ {1, 2, 3}.

A.6 Displacement determined from wave fronts

The the apparent displacement can be determined directly from the local tilt of the normal vector
to wave fronts with respect to the radial direction, given by the angle α. We demonstrate this
for the case of a circularly polarized dipole, see Figure A.2. The parametric expression for the
spiral wave front of a σ+ polarized dipole is given by

R(t) =
λ

2π
ωt

(
cos(ωt)
sin(ωt)

)
, (A.52)

4Note that the momentum density given in 2.20 is a function of r ∈ R3, whileRell is a two dimensional path. In
order to calculate the product in A.48 the z-coordinate in the momentum density needs to be set zero
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aperture

Figure A.2: Spiral wave front. The spiral wave front of the light emitted by a σ+ polarized
dipole, which is given by the parametric expressionR(t). The angle α′ between the vector Ṙ(t),
which is parallel to the tangent on the wave fronts, can be used to determine the angle α between
the normal vector n(t) on the wave fronts and the radial direction, given by R(t). The wave
fronts of the light passing an aperture can be approximated by plane waves which are tilted by
α, giving the impression that the light originates from a position which is not the position of the
emitter.

with R(t) = ωtλ/(2π). The tangent of this spiral is given by

Ṙ(t) =
λ

2π
ω

(
cos(ωt)− ωt sin(ωt)
sin(ωt) + ωt cos(ωt)

)
, (A.53)

with Ṙ(t) =
√

1 + (ωt)2 ·λ/(2π). Now the angle α′ betweenR(t) and Ṙ(t) can be determined
via

cos(α′) =
R(t) · Ṙ(t)

R(t)Ṙ(t)
=

1√
1 + (ωt)2

. (A.54)

Since α and α′ lie within an rectangular triangle we can get the following expression for α :

sin(α) =
1√

1 + t2
. (A.55)

With t = R · 2π/(λω) and assuming α being small and R large we can make the approximation
α ≈ λ/(2πR).

We now assume the situation were an aperture with diameter D is placed along the y-axis
at a distance R � D from a σ± polarized dipole and it is imaged onto a screen at a distance d
from the aperture. The local wave fronts at the position of the aperture can be approximated by
plane waves which are tilted by the angle α with respect to the optical axis. This tilt leads to a
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displacement of the center of mass of the image of a σ± polarized dipole at the screen of

q̄x = ∓ d
R

λ

2π
. (A.56)

From this center of mass position along the x-axis one draws the conclusion, that the emitter is
displaced by

∆x = ± λ

2π
. (A.57)

A.7 Modification of dipole fields by a lens

We now assume a dipole emitter which is placed in the focus of a lens at the optical axis. In
order to describe the electric field of an elliptically polarized dipole after the lens we use the
decomposition of the field introduced in 2.31. The field of the elliptically polarized dipole
rotating around the z-axis is given by

Eell =
1

Nε
(EDx + ε · i ·EDy) , (A.58)

where EDx and EDx are the fields emitted by dipoles oscillating along the x- and y-axis. Ap-
plying their corresponding dipole momenta µDx = ex and µDy = ex to equation 2.29 leads to
the following expressions for the far field:

Eff
Dx(ρ, φ, y) =

eik
√
y2+ρ2

(y2 + ρ2)3/2

 y2 + ρ2 sin(φ)2

−yρ cos(φ)
−ρ2 sin(φ) cos(φ)

CE (A.59)

Eff
Dy(ρ, φ, y) =

eik
√
y2+ρ2

(y2 + ρ2)3/2

−yρ cos(φ)
ρ2

−yρ sin(φ)

CE . (A.60)

Here r = (x, y, z) denotes the Cartesian coordinates with respect to the origin and (ρ, φ) are
polar coordinates within the plane orthogonal to the imaging axis (y-axis) with x = ρ cos(φ) and
z = ρ sin(φ). CE is constant in r but includes the time dependence of the field. With D � f
follows at the position of the aperture ρ� f , leading to

1

(f2 + ρ2)3/2
≈ 1

f3
. (A.61)

By only taking the lowest order of f−n into account and neglecting the higher orders we can
approximate the fields at the aperture in front of the lens to

E
ap.
Dx(ρ, φ, f) =

1

f
ex e

ik
√
f2+ρ2 CE (A.62)

E
ap.
Dy(ρ, φ, f) = − ρ

f2
eρ e

ik
√
f2+ρ2 CE , (A.63)
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where eρ is given by

eρ =

cos(φ)
0

sin(φ)

 . (A.64)

The lens now modifies the phase of the fields passing through with the phase transfer function
[83]

l(ρ) = e
−ik ρ

2

2f · eik(y+y0), (A.65)

where y0 is a constant phase shift. The phase of the fields right after the lens is given by

l(ρ) · eik
√
f2+ρ2 = e

ik

(√
f2+ρ2− ρ

2

2f

)
· eik(y+y0) = e

ikf

(√
1+ ρ2

f2
− ρ2

2f2

)
·eik(y+y0)

. (A.66)

Here we can make the following approximation

ikf

(√
1 +

ρ2

f2
− ρ2

2f2

)
≈ ikf

(
1 +

ρ2

2f2
− ρ2

2f2

)
= ikf, (A.67)

for ρ� f . This leads to a phase eiky · eik(y0+f) of the field after the lens, meaning that the field
after the lens is a spatially limited plane wave. The constant part of this phase shift will in the
further calculations be included in CE . Now the fields after the lens can be written as

Elens
Dx (ρ, φ) =

1

f
ex e

iky CE (A.68)

Elens
Dy (ρ, φ) = − ρ

f2
eρ e

iky CE . (A.69)

Finally the field of the elliptically polarized dipole after the lens is given by

Elens
ell =

1

Nε

(
Elens

Dx + ε i Elens
Dy
)

(A.70)

A.8 Determination of mean momentum

In this section the mean momentum p̄ of light emitted by an elliptically polarized dipole, which
passed the first lens of an imaging system will be derived. We assume an imaging system as it
is shown in Figure 2.6, where the first lens of focal length f and aperture diameter D is placed
at distance f from the emitter, which is located at the origin. The optical axis of the imaging
system is set to be the y-axis. The light field of the elliptically polarized emitter after the first
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lens is given by

Elens
ell =

1√
1 + |ε|2

(
Elens

Dx + iεElens
Dy
)

=

=
1√

1 + |ε|2


1
f − iε

ρ
f2

cos(φ)

0
−iε ρ

f2
sin(φ)

 eiky CE , (A.71)

using the fields Elens
Dx and Elens

Dy which are derived in section A.7. Here (ρ, φ) are polar coordi-
nates within the plane orthogonal to the imaging axis, with x = ρ cos(φ) and z = ρ sin(φ).

The mean momentum of the light after the lens is given by the integral of the linear momen-
tum density ρp over the volume of the lens,

p̄ =

f+dy∫
f

2π∫
0

D/2∫
0

ε0
2ω

Im
((
~∇⊗Elens

ell

) (
Elens

ell
)∗)︸ ︷︷ ︸

ρµ

ρ dρ dφ dy. (A.72)

With the expression

~∇⊗Elens
ell =

1√
1 + |ε|2

1

f2

 −iε 0 0
k(if + ερ cos(φ)) 0 kερ sin(φ)

0 0 −iε

 eiky CE , (A.73)

the linear momentum density of the field of the elliptically polarized emitter after the lens can
be written as

ρP =
ε0 |CE |2

2ωf4

√
1 + |ε|2

Im


 |ε|2 ρ cos(φ)− iεf
i
(
kf2 + |ε|2 kρ2 + 2 Im(ε)kfρ cos(φ)

)
|ε|2 ρ sin(φ)


 =

=
ε0 |CE |2

2ωf4

√
1 + |ε|2

 −Re(ε)f

kf2 + |ε|2 kρ2 + 2 Im(ε)kfρ cos(φ)
0

 . (A.74)

It is then possible to evaluate the integral A.72 to

p̄ =
e0CE
2ω

D2

4f2

dy

(1 + |ε|2)


− 1
f πRe(ε)dy

kπ(1 + |ε|2 D2

8f2
)dy

0

 . (A.75)
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In the approximation D � f we can identify D/(2f) with the numerical aperture NA of the
imaging system. Note that this aperture is the geometrical aperture and thus does not depend on
the refractive index. The mean momentum is then finally given by

p̄ =
e0CE

2ω

NA2 dy

(1 + |ε|2)


− 1
f πRe(ε)dy

kπ(1 + |ε|2 NA2

2 )dy

0

 . (A.76)

The mean linear momentum density of the light that passed the lens and was emitted by
linearly polarized emitters oscillating along the x- and y-axis is given by

ρP (µDx) =
ε0
2ω

|CE |2 k
f2

ey (A.77)

and

ρP (µDx) =
ε0
2ω

|CE |2 kρ2

f4
ey. (A.78)

The mean linear momentum density of this two dipole emitters does not feature any transverse
components and thus no displacement of the center of mass of the image at the screen can
be observed. This can also be seen in expression A.76, for ε = 0, which corresponds to a
linearly polarized dipole oscillating along the x-axis and ε =∞, which corresponds to a linearly
polarized dipole oscillating along the y-axis. In both cases the transverse linear momentum
component vanishes.

A.9 Angular momentum of photons

The effect that an emitter which is elliptically polarized appears to be at a position where it
is in fact not, was determined in section 2.2.3, using the classical linear momentum density
of a light field. However, its is possible to explain and quantitatively study this effect in a
quantum mechanically approach using the angular momentum of the photons emitted by the
dipole emitter. This derivation will be presented in this section.

In general an arbitrary polarized dipole emits photons with an non-zero angular momentum.
The angular momentum carried by the photons can be decomposed into the orbital and the spin
angular momentum, which are represented by the operators L̂ and Ŝ, with

L̂ = r × p̂, (A.79)

and p̂ = −i~~∇. A σ± polarized dipole, rotating in the xy-plane, emits photons with a total
angular momentum of ±~. It was already pointed out in 2.2.2 that the decomposition of this
overall angular momentum into orbital and spin angular momentum is dependent on the propa-
gation direction of the emitted photons. While photons emitted along the z-axis feature solely
spin angular momentum the photons in the xy-plane carry only orbital angular momentum.
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A.9.1 Weak value of orbital angular momentum

In order to determine the displacement of the center of mass of the intensity distribution in
the image of an elliptically polarized emitter, we want to measure locally the orbital angular
momentum. This seems to be somehow contradictory to Heisenberg’s uncertainty principle.
But, using an operational approach, the local orbital angular momentum of the photons emitted
by the dipole is measured by cutting off a part of the photon wave function Ψ(r, t), using an
aperture. This is known as a measurement of the so called weak value of the overall orbital
angular momentum of the photon wave function at the position of the aperture. The concept
of weak values was first introduced in [84]. In the following we define the weak value of the
photon’s orbital angular momentum by [85, 86]

〈p̂j〉A =
〈ΨA|p̂j |Ψ〉
〈ΨA|Ψ〉

, (A.80)

where Ψ is the original photon wave function and ΨA the post-selected wave function which
defines the part of the photon that passes the aperture. In the following we use the notation

〈ΨA|p̂j |Ψ〉 := 〈Ψ|p̂j |Ψ〉A (A.81)

and

〈ΨA|Ψ〉 := 〈Ψ|Ψ〉A . (A.82)

A weak value does not need to lie within the range of eigenvalues of the measured observable
and can even be complex valued. Consequently the local angular momentum of the photons can
exceed ~ by far and is an example for a so called ’supermomentum’ [148].

Following the procedure in 2.2.3 we assume an emitter at the origin emitting photons with
non-zero angular momentum. Without limitation of generality we set the axis along which we
image the emitter as y-axis. An aperture with diameter D is placed at a distance r0 from the
origin and the part of of the emitted light passing the aperture, is imaged onto a screen in the far
field at a distance d to the aperture. The presence of orbital angular momentum in the light at
the aperture then gives rise to a linear transverse momentum 〈p̂j〉A, with j ∈ {x, z}, which is
given by

〈p̂x〉A = − 1

r0

〈
L̂z

〉
A

(A.83)

〈p̂z〉A =
1

r0

〈
L̂x

〉
A
. (A.84)

The presence of the linear transverse momentum in addition to the linear longitudinal momentum
〈p̂y〉A causes a tilt of the mean propagation direction of the photons which passed the aperture,
see Figure A.3. The tilt of the mean propagation direction with respect to the optical axis is
the reason why the photons seem to originate from a position which is offset to the emitter
[49, 50, 79, 81, 82]. Along their way from the aperture to the screen the photons increase their
distance to the optical axis, forming an image at the screen of which the center of mass does not
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Figure A.3: Transverse linear momentum. The orbital angular momentum of the light emitted
by an arbitrary polarized dipole leads to linear transverse momenta 〈p̂x〉A and 〈p̂z〉A of the
photons that pass an aperture at a distance r0 from the emitter. This linear transverse momentum
leads in turn to a tilt of the local propagation direction. Along the way to a screen at a distance
d from the aperture the photons which passed the aperture increase their distance to the optical
axis due to the tilt of the local propagation direction. This results in a displacement of the center
of mass of the image on the screen.

coincide with the optical axis. The expectation value of the shift 〈qj〉A of the center of mass of
the far field image with respect the optical axis can be determined via the relations

〈p̂x〉A
〈p̂y〉A

=
〈qx〉A
d

(A.85)

〈p̂z〉A
〈p̂y〉A

=
〈qz〉A
d

. (A.86)

Consequently the shift of the center of mass can be written as

〈qx〉A = d
〈p̂x〉A
〈p̂y〉A

= d
〈Ψ|p̂x|Ψ〉A
〈Ψ|p̂y|Ψ〉A

(A.87)

〈qz〉A = d
〈p̂z〉A
〈p̂y〉A

= d
〈Ψ|p̂z|Ψ〉A
〈Ψ|p̂y|Ψ〉A

(A.88)

Determining the center of mass in the far field image can therefore be considered as a mea-
surement of the weak value of the orbital angular momentum of the photons passing the aperture.
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A.9.2 Displacement and momentum density

In order to determine the displacement of the center of mass of the image of an elliptically
polarized dipole we need to find the wave function Ψ of the photons emitted by the dipole. In
general the photon wave function can be written as

|Ψ〉 =
3∑

k=1

∫
Ψ(r, χk) a

†
r,χk

|0〉 d3r, (A.89)

where Ψ(r, χk) gives the probability to find the photon at the position r in one of the three
orthogonal polarization states χk with k ∈ {1, 2, 3}. Using this wave function we can determine
the expectation values of the position of the center of mass in the image plane, given by the
expressions A.87 and A.88. The un-normalized expectation value 〈Ψ|p̂j |Ψ〉A can be written as

〈Ψ|p̂j |Ψ〉A = −i~
∫ ∫

A

∑
l

∑
k

Ψ∗(r′, χl) ∂xj Ψ(r, χk) 〈0|ar′,χla
†
r,χk
|0〉︸ ︷︷ ︸

δrr′δkl

d3r′ d3r

= −i~
∫
A

∑
k

Ψ∗(r, χk) ∂xj Ψ(r, χk) d
3r. (A.90)

Here
∫
A d

3r′ indicates the integral over the aperture. For the considered emitter the probability
Ψ(r, χek) to find at position r a photon in the polarization state χek is proportional to the cor-
responding component of the classical electric field ek ·Eell(r), with k ∈ {x, y, z}. Therefore,
the expression A.90 can be written as

〈Ψ|p̂j |Ψ〉A = −i~ |CΨ|2
∫
A

∑
k

E∗k(r) ∂xjEk(r) d3r

= −i~ |CΨ|2 · ej
∫
A

(
~∇⊗Eell(r)

)
E∗ell(r) d3r. (A.91)

We already know the expression
(
~∇⊗Eell

)
E∗ell, since its imaginary part is the momentum

density ρP 2.20. The un-normalized expectation value 〈Ψ|p̂j |Ψ〉A can in the framework of
this derivation in principle be a complex number. The weak value of the linear momentum
is given by the just derived expression divided by 〈Ψ|Ψ〉A, which is real valued. In order to
obtain a physical meaningful expectation value of the momenta we take the real part of the
un-normalized expectation value A.91,

Re
(
〈Ψ|p̂j |Ψ〉A

)
= −~ |CΨ|2 · ej

∫
A

Re
(
i
(
~∇⊗Eell(r)

)
E∗ell(r)

)
d3r

= ~ |CΨ|2 · ej
∫
A
ρP (r) d3r. (A.92)

Consequently the expectation value of the center of mass of the image is given by ratio of the
mean linear transverse momentum to the mean linear longitudinal momentum, averaged over
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the aperture,

〈qx〉A = d

∫
A ex · ρP (r) d3∫
A ey · ρP (r) d3

(A.93)

〈qz〉A = d

∫
A ez · ρP (r) d3∫
A ey · ρP (r) d3

, (A.94)

which is the same result as obtained in 2.2.3. When applying to this expectation values the field
emitted by an elliptically polarized emitter, which passed a lens, one gets exactly the same result
for the displacement of the center of mass of the image, and the consequently assumed apparent
displacement, as determined in 2.2.3.3. Not only does one get the same result as in the classical
determination, it would also be possible to identify in this derivations the momentum density.

A.10 Polarization of the evanescent field

When sending quasi linearly polarized light through a nanofiber there exist local elliptical polar-
izations, which can be in some cases almost circular [14]. While standard circularly polarized
light rotates in a plane which is perpendicular to the direction of propagation, the strong trans-
verse field gradients in the nanofiber give rise to elliptically polarized light fields rotating in a
plane of which the surface normal is fully perpendicular to the propagation direction. Consider-
ing the case of a nanofiber mode propagating along the z-axis which is quasi linearly polarized
along the horizontal x-axis, the evanescent field in the yz-plane is also solely linearly polar-
ized along the x-axis. However the field in the xz-plane exhibits local elliptical polarization
close to the fiber surface (inside the fiber as well as in the evanescent field). This local elliptical
polarization is of the form

Efib(x, y = 0, z) ∝ 1√
1 + |χ(x)|2

(ex + i χ(x) ez) , (A.95)

where Efib is the electric field of the light propagating in the nanofiber. Consequently the major
axis of the local polarization ellipse (see section 2.2.1) are equal to the x- and z-axis.

In order to compare the light field in and outside of the fiber to linearly or circularly polarized
fields we use the polarization overlap which is defined as

η =
E∗fib · ep

|Efib|2
, (A.96)

where ep is a normalized polarization vector.
Figure A.4a shows the intensity distribution of the light field in a nanofiber [14] with a

diameter of 320 nm, plotted along the cross section of the nanofiber. The light field is quasi
linearly polarized along the x-axis and has a wavelength of 532 nm. Subfigure b shows the
polarization overlap of the same fiber field in the xz-plane with σ± polarization, plotted as a
function of the x-position, with ep(σ±) = (ex ± i ez)/

√
2. While this overlap has a strong

variation inside of the nanofiber it is almost constant in the evanescent field, with a value of
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Figure A.4: Fiber field an polarization overlap. a, The intensity distribution in the cross
section of a nanofiber with a diameter of 320 nm, guiding light at a wavelength of 532 nm which
is quasi linearly polarized along the x-axis. b, The polarization overlap of the fiber field in the
xz-plane with σ± polarization (blue, yellow) plotted as a function of the x-position with respect
to the center of the fiber. Additionally, the overlap of the fiber field in the yz-plane with linear
polarization (along x-axis) (green) is plotted as a function of the y-position. c, The ratio of the z
and x components of the field in the xz-plane, plotted as a function of the x-position. This ratio
corresponds to the dipole polarization ratio ε with respect to an observer which observes the
fiber along the x-axis. d, e and f, Density plots along the fiber cross section showing the overlap
with linear (along x-axis), σ+ and σ− polarization. g, h and i, Density plots along the fiber cross
section showing the overlap with linear (along x-axis), σ+ and σ− polarization, multiplied with
the local intensity.

±0.93. Additionally the polarization overlap of the fiber field in the yz-plane with ep = ex
(linear polarization along the x-axis) is plotted as a function of the y-position. It can be seen, that
along the y-axis the fiber field is solely linearly polarized along the horizontal axis. In subfigure
c the ratio between the z- and x-component of the electric field in the xz-plane, plotted as a
function of the x-position. This ratio corresponds to the dipole polarization ratio ε (see section
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2.2.1) with respect to an observer which observes the fiber along the x-axis. Here ε ≈ −1.7
on the left side of the fiber and ε ≈ 1.7 on the right side of the fiber. From this values it is
possible to estimate the offset between the apparent position and the real position when imaging
a nanoparticle which is illuminated by the local elliptically polarized light in the evanescent field
of the nanofiber. However, one has to take a modification of the field emitted by the nanoparticle
into account which is caused by the reflection on the fiber, see 3.3.2. The subfigures d, e and
f show the polarization overlap with linear (along x-axis) and σ± polarization along the fiber
cross-section and the subfigures g, h, and i show the same overlap multiplied with the local
intensity.

Due to the polarization properties of the evanescent field nanofibers are not only useful tools
to mount and detect individual nanoparticles. Moreover they provide polarization states which
are either linearly or almost perfectly circularly polarized. Therefore, nanofibers were excellent
tools for a first proof that the position of a single gold nanoparticle seems to depend on the
polarization of the illuminating light.

A.11 Determining the magnification of the immersion microscope

Figure A.5: simplified sketch of the imaging system. The microscope of the imaging system
is modelled by a single lens which is placed at distance LO from the front half sphere lens. It
forms an Image at the CCD chip of the camera which has a fixed distance LP to the lens. In order
to obtain a focussed image of the nanoparticle, which is at a distance d from the plane facet of
the front half sphere lens only the distance LO can be changed.

To determine the magnification of the overall imaging system we approximate the standard
optical microscope by a single lens with a focal length of 10 mm, as shown in Figure A.5. Usu-
ally in an imaging system the distance between the object and the whole imaging system is
changed to obtain a focused image of the object, while the composing components of the imag-
ing system have fixed distances. In our imaging system only the rear part, consisting of the
standard optical microscope can be moved to scan for the focus. The fixed distance LP between
the lens approximating the standard optical microscope and the image plane is determined via
the magnification of the standard microscope. It was measured using a surface topography stan-
dard. Then the distance LO between the half sphere lens and the lens representing the standard
optical microscope is evaluated using ray transfer matrix analysis [123]. This is done under the
condition that light which is emitted at the optical axis at a distance d with respect to the facet
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of the half sphere lens, is imaged at a distance LP after the microscope lens again on the optical
axis. While the real distance d between the gold nanoparticle and the facet of the half ball lens
could not be measured directly it was possible to measure the distance d′ = (101± 15) µm for
which the standard optical microscope needed to be moved in order to show a focused image
of the nanoparticle, respectively of scatterers on the facet of the half sphere lens. The error of
this measured length is given by the distance the standard optical microscope can be moved
while the image of the nanoparticle respectively the facet of the half sphere lens might still
be considered focused. However, this error is likely to be overestimated. Using d′ the posi-
tion of the nanoparticle with respect to the facet of the half sphere lens can be determined to
d = (68 ± 10) µm. With this parameters we now evaluate the magnification of the overall
imaging system to M0.41 = 21.9± 0.1 and M0.61 = 20.0± 0.1.

A.12 Linear polarization under imaging conditions

The presented apparent displacement introduces a new source of possible errors in superres-
olution microscopy. While some of the novel methods used in this very active field can not
be subject to the apparent displacement presented in this work, like STEP [62] other methods
could in principle be subject to systematic errors which exceeds the established accuracies by
up to two orders of magnitude [52, 53]. The majority of the emitters used in super-resolution
microscopy are fluorescent molecules. A major assumption concerning this molecules is that
hey are considered to strictly feature linearly polarized transitions [138]. If this would be an ac-
curate assumption, such molecules could not emit fields containing orbital angular momentum
and therefore do not feature any apparent position when the used imaging system is properly
focused.

But this assumption should be critically challenged. Even for a molecule of which the in-
ternal geometry would fulfil the requirement the assumption of a strictly linearly polarized tran-
sition seems un-physical under experimental conditions. Being immersed in a gaseous, liquid,
or solid medium, temperature- and/or strain-induced vibrations or static distortions will lead to
spectral overlap of transitions of different polarizations. Thus it is likely that molecules can
feature a finite elliptical polarization of transitions which would be perfectly linearly polarized
without such perturbations. The question is how strong the perturbation and the consequent
elliptical polarization is in a given experimental situation.

In order that such a finite elliptically polarized transitions of fluorescent molecules can lead
to errors in position measurements the presence of elliptical polarization at the position of the
molecule is necessary. Such an elliptical field component can in principal occur initially in the
illuminating beam, or arise in the imaging system. An example is a strongly focused beam,
which is initially perfectly linearly polarized, but shows in the focus region local elliptical po-
larization [8, 9], see Figure A.6a. Another example is the interference of the initial illuminating
light with some spurious reflection. Figure A.6b shows a substrate containing emitters of which
the positions should be measured. The top and bottom surface of the substrate are considered to
be not perfectly parallel, but being tilted with respect to each other by an angle α. The initial
illumination light is linearly polarized. Now the superposition of the illuminating light and its re-
flection generates a periodic pattern of local elliptical polarizations. The corresponding apparent
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Figure A.6: Sources of local elliptical polarization. a, An initially linearly vertically polarized
collimated beam is focused by a lens. Near the focus region there exist local elliptical polariza-
tions. b, An along the x-axis linearly polarized beam illuminates emitters within a substrate.
The bottom surface of the substrate is tilted with respect to the top surface by an angle α. The
superposition of the incoming illuminating light with the light reflected by the bottom surface
leads to local elliptical polarization at the position of the emitters. c, The displacement ∆x of an
emitter with scalar polarizability resulting from the situation shown in subfigure b plotted as a
function of the z position, for three different angles α. The reflectivity of the bottom surface is
assumed to be 4%. The emitters are considered to feature any polarization state. Both axes are
given in units of λ. d, The displacement ∆x resulting from the situation shown in subfigure b
plotted as a function of the x position, for three different angles α.

displacement one would measure when imaging an emitter which features a scalar polarizabil-
ity, e.g. a gold nanoparticle, are shown in Figure A.6c as a function of the z-position (along
the optical axis) and in subfigure d as a function of the x-position (along an axis, parallel to the
polarization of the illumination light) of the emitter. The aperture used to calculate the plot data
is NA = 1 and the reflectivity of the substrate was considered to be 4%. A crucial behaviour of
local elliptical polarizations generated by superposition is, that they occur in a periodic pattern.
Therefore the apparent shift of the imaged emitters depends on their position. Consequently the
error when measuring the distance between two emitters can be either zero, or twice the apparent
displacement. In general it is not an easy task to rule out any spurious reflection in or near the
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sample to be imaged.
To estimate a possible error in an individual position measurement one needs to investigate

the polarizability properties of the imaged emitters into account, as well as the potential presence
of local elliptical polarization. Any detailed study has to be done for individual experimental
realisations.

A.13 Other error sources in super-resolution microscopy

Beside this so far more or less unknown effect presented in this thesis, there are a lot of other
error sources in super-resolution microscopy which can influence the outcome of position de-
termination measurements. While playing a minor role in traditional microscopy, were they are
negligible, they now start to play a key role in super-resolution microscopy limiting the achiev-
able resolution. This by now well known effects were subject to many studies to investigate their
origin and to develop methods for correcting the outcome of position measurements. Such possi-
ble error sources can be categorized in three major fields: technical limitations and issues of the
imaging setup itself, undesired behaviour of the imaged samples and the usage of inappropriate
methods to determine positions [149]. Most methods to avoid or minimize the resulting errors
are not implemented in only one of three named fields but take action in the overall imaging
and analysing process. A prominent example for technical issues is the fact that an inhomoge-
neous illumination of the optical aperture leads to systematic errors in position determination
when the imaged sample is out of focus [118, 150]. This effect is well known and there are
numerous of studies which provide methods to avoid the caused errors. The majority of this
methods work on the analysis involved in the position determination process to achieve high
precisions [119, 120, 151, 152]. But there are also approaches which take action at the setup,
like adding additional optical elements to the used microscope [121]. Some of the innovative
methods used in super-resolution microscopy take advantage of the fundamental properties of
nano-scale emitters, which are used to improve the obtainable resolution. This is the case for the
methods PALM [63] and dSTORM [64], which are representatives of fluorescence microscopy
and are based on photoswitchable fluorescent molecules. Beside the advantages of this kind
of emitters their stochastic behaviour can give rise to misinterpretation of the produced im-
ages [153]. There are numerous of other methods to go beyond the standard resolution limit.
Some of them make the imaging and position determination process much more complex as
it was in traditional microscopy, see for example [154]. In general, the super-resolution mi-
croscopy is a very active field in science, used to study and being studied. A lot of effort has
been put into holding the newly acquired resolution and not to lose it again to effects which
were former considered to be negligible or not known at all [130, 155]. The effect presented in
this work will add a very fundamental error source in super-resolution position determination
and should be kept in mind when designing and performing position measurements in the sub
wavelength regime.
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